
Chapter 1

Expectation-Maximization methods for solving (PO)MDPs
and optimal control problems

Marc Toussaint1, Amos Storkey2 and Stefan Harmeling3

As this book demonstrates, the development of efficient probabilistic inference
techniques has made considerable progress in recent years, in particular with respect
to exploiting the structure (e.g., factored, hierarchical or relational) of discrete and
continuous problem domains. In this chapter we show that these techniques can
be used also for solving Markov Decision Processes (MDPs) or partial observable
MDPs (POMDPs) when formulated in terms of a structured dynamic Bayesian
network (DBN).

The problems of planning in stochastic environments and inference in state space
models are closely related, in particular in view of the challenges both of them face:
scaling to large state spaces spanned by multiple state variables, or realizing plan-
ning (or inference) in continuous or mixed continuous-discrete state spaces. Both
fields developed techniques to address these problems. For instance, in the field of
planning, they include work on Factored Markov Decision Processes (Boutilier et al.,
1995; Koller and Parr, 1999; Guestrin et al., 2003; Kveton and Hauskrecht, 2005),
abstractions (Hauskrecht et al., 1998), and relational models of the environment
(Zettlemoyer et al., 2005). On the other hand, recent advances in inference tech-
niques show how structure can be exploited both for exact inference as well as mak-
ing efficient approximations. Examples are message passing algorithms (loopy Belief
Propagation, Expectation Propagation), variational approaches, approximate belief
representations (particles, Assumed Density Filtering, Boyen-Koller) and arithmetic
compilation (see, e.g., Minka, 2001; Murphy, 2002; Chavira et al., 2006).

In view of these similarities one may ask whether existing techniques for proba-
bilistic inference can directly be translated to solving stochastic planning problems.
From a complexity theoretic point of view, the equivalence between inference and
planning is well-known (see, e.g., Littman et al., 2001). Inference methods have been
applied before to optimal decision making in Influence Diagrams (Cooper, 1988;
Pearl, 1988; Shachter, 1988). However, contrary to MDPs, these methods focus on
a finite number of decisions and a non-stationary policy, where optimal decisions are
found by recursing backward starting from the last decision (see (Boutilier et al.,
1999) and (Toussaint, 2009) for a discussion of MDPs versus Influence Diagrams).
More recently, Bui et al. (2002) have used inference on Abstract Hidden Markov
Models for policy recognition, i.e., for reasoning about executed behaviors, but do
not address the problem of computing optimal policies from such inference. Attias

1TU Berlin
2U Edinburgh
3MPI Tübingen

1

2

(2003) proposed a framework which suggests a straight-forward way to translate
the problem of planning to a problem of inference: A Markovian state-action model
is assumed, which is conditioned on a start state s0 and a goal state sT . Here, how-
ever, the total time T has to be fixed ad hoc and the MAP action sequence that is
proposed as a solution is not optimal in the sense of maximizing an expected future
reward. Raiko and Tornio (2005) introduced the same idea independently in the
context of continuous state stochastic control and called this optimistic inference
control. Verma and Rao (2006) used inference to compute plans (considering the
maximal probable explanation (MPE) instead of the MAP action sequence) but
again the total time has to be fixed and the plan is not optimal in the expected
return sense.

We provide a framework that translates the problem of maximizing the dis-
counted expected future return in the infinite-horizon MDP (or general DBN) into
a problem of likelihood maximization in a related mixture of finite-time MDPs.
This allows us to use expectation maximization (EM) for computing optimal poli-
cies, utilizing arbitrary inference techniques in the E-step. We can show that this
optimizes the discounted expected future return for arbitrary reward functions and
without assuming an ad hoc finite total time. The approach is generally applicable
on any DBN-description of the problem whenever we have efficient inference tech-
niques for this structure. DBNs allow us to consider structured representations of
the environment (the world state) as well as the agent (or multiple agents, in fact).

The next section introduces our Likelihood Maximization approach for solv-
ing Markov Decision Processes. This will involve the introduction of a mixture of
variable length DBNs for which we can show equivalence between likelihood maxi-
mization and maximization of expected future return. Section 1.2 in detail derives
an EM algorithm. Here, the key are efficient inference algorithms that handle the
mixture of variable length processes. The derived algorithms are applicable on ar-
bitrary structured DBNs. In section 1.3 we reconsider the basic MDP case, explain
the relation of the EM algorithm to Policy and Value Iteration, and demonstrate
the approach using exact inference on a discrete maze and Gaussian belief state
propagation in non-linear stochastic optimal control problems.

In section 1.4 we consider a non-trivial DBN representation of a POMDP prob-
lem. We propose a certain model of an agent (similar to finite state controllers,
FSCs) that uses an internal memory variable as a sufficient representation of history
which gates a reactive policy. We use this to learn sufficient memory representations
(e.g., counting aisles) and primitive reactive behaviors (e.g., aisle or wall following)
in some partially observable maze problems. This can be seen in analogy to the
classical Machine Learning paradigm of learning latent variable models of data for
bootstrapping interesting internal representations (e.g., ICA) — but here general-
ized to the learning of latent variable models of successful behavior. Section 1.5
will conclude this paper and discuss existing follow-up work and future directions
of research.

1.1 Markov Decision Processes and likelihood maximization

A Markov Decision Process (MDP, (Kaelbling et al., 1996)) is a stochastic process
on the random variables of state st, action at, and reward rt, as defined by the

initial state distribution P (s0 =s) ,
transition probability P (st+1 =s′ | at=a, st=s) ,
reward probability P (rt=r | at=a, st=s) ,

3

a0

s0

r0

a1

s1

r1

a2

s2

r2

Figure 1.1: Dynamic Bayesian network for a MDP. The x states denote the state variables, a the
actions and r the rewards.

policy P (at=a | st=s;π) =: πas .

We assume the process to be stationary (none of these quantities explicitly depends
on time) and call the expectation R(a, s) = E{r | a, s} =

∑
r r P (r | a, s) the re-

ward function. In model-based Reinforcement Learning the transition and reward
probabilities are estimated from experience (see, e.g., (Atkeson and Santamaŕıa,
1997)). In section 1.5.1 we discuss follow-up work that extends our framework to
the model-free case. The random variables st and at can be discrete or continuous
whereas the reward rt is a real number. Figure 1.1 displays the dynamic Bayesian
network for an infinite-horizon Markov Decision Process (MDP).

The free parameter of this DBN is the policy π with numbers πas ∈ [0, 1] nor-
malized w.r.t. a. The problem we address is solving the MDP :

Definition 1.1.1. Solving an MDP means to find a parameter π of the infinite-
horizon DBN in Figure 1.1 that maximizes the expected future return
V π = E{

∑∞
t=0 γ

t rt;π}, where γ ∈ [0, 1) is a discount factor.

The classical approach to solving MDPs is anchored in Bellman’s equation, which
simply reflects the recursive property of the future discounted return

∞∑
t=0

γt rt = r0 + γ
[∞∑
t=0

γt rt+1

]
(1.1)

and consequently of its expectation conditioned on the current state,

V π(s) = E{
∞∑
t=0

γt rt

∣∣∣ s0 =s;π} =
∑
s′,a

P (s′|a, s) πas [R(a, s) + γ V π(s′)] .

(1.2)

Standard algorithms for computing value functions can be viewed as iterative schemes
that converge towards the Bellman equation or as directly solving this linear equa-
tion w.r.t. V by matrix inversion.

In contrast, our general approach is to translate the problem of solving an MDP
into a problem of likelihood maximization. There are different approaches for such
a translation. One issue to be considered is that the quantity we want to maximize
(the expected future return) is a sum of expectations in every time slice, whereas the
likelihood in Markovian models is the product of observation likelihoods in each time
slice. A first idea for achieving equivalence is to introduce exponentiated rewards
as observation likelihoods – but that turns out non-equivalent (see Remark (iii) in
the appendix section .1).

Toussaint and Storkey (2006); Toussaint et al. (2006) introduced an alternative
based on a mixture of finite-length processes. Intuitively, the key argument for this

4

M
IX

T
U

R
E

 o
f

fi
n

it
e

−
ti
m

e
 M

D
P

s

s

aT

xT

R

time prior:
P (T)

T = 0

T = 2

T = 1

a0

a0 a1

a2a1a0

a0 a1 a2

R

R

R

s0

s0 s1

s1 s2s0

s0 s1 s2

Figure 1.2: Mixture of finite-time MDPs.

approach is perhaps the question Where do I start the backward sweep? In all EM
approaches we need to compute a posterior over trajectories in the E-step so that
we can update the policy in the M-step. In finite-length Markov processes, such
inference can efficiently be done by a forward-backward sweep (Baum-Welch). If the
process is infinite it is unclear where in the future to start (anchor) the backward
sweep. However, when introducing a binary reward event there is a very intuitive
solution to this: Let us simply declare that the reward event occurs at some time
T in the future, without knowing what T is, and we start the backward sweep
from that time T backward. In that way we can start computing backward and
forward messages in parallel without having to estimate some horizon ad hoc, and
decide when to stop if there is sufficient overlap between the forward and backward
propagated messages (Toussaint and Storkey, 2006). When we choose a geometric
prior P (T) = (1− γ)γt this turns out to implement the discounting correctly.

The mixture model is in some respects different to the original MDP but the
likelihood of “observing reward” in this mixture model is proportional to the ex-
pected future return in the original MDP. The reasons for this choice of approach are
related to inference (performing a backward pass) without pre-fixing a finite time
horizon T , the handling of discounting rewards, and also to the resulting relations
to standard Policy and Value Iteration, as it will later become more clear.

We define the mixture model as follows. Let ξ = (s0:T , a0:T) denote a state-
action sequence of length T , and let R be a random event (binary variable) with
P (R | a, s) proportional to the reward function R(a, s), for instance as in (Cooper,
1988),

P (R | a, s) =
R(a, s)−min(R)
max(R)−min(R)

. (1.3)

Each finite-time MDP defines the joint

P (R, ξ |T ;π)

= P (R | aT , sT) P (aT | sT ;π)
[T−1∏
t=0

P (st+1 | at, st) P (at | st;π)
]
P (s0) . (1.4)

That is, each finite-time MDP has the same initialization, transition, and reward
probabilities as the original MDP but (i) it ends at a finite time T and (ii) it emits
a single binary reward R only at the finial time step.

5

Now let T be a random variable with prior P (T). The mixture of finite-time
MDPs is given by the joint

P (R, ξ, T ;π) = P (R, ξ |T ;π) P (T) . (1.5)

Note that this defines a distribution over the random variable ξ in the space of
variable length trajectories. Figure 1.2 illustrates the mixture. We find

Theorem 1.1.1. When introducing binary rewards R such that P (R | a, s) ∝ R(a, s)
and choosing the geometric time prior P (T) = γT (1− γ), maximizing the likelihood

L(π) = P (R;π) (1.6)

of observing reward in the mixture of finite-time MDPs is equivalent to solving the
original MDP.

Given the way we defined the mixture, the proof is straight-forward and illus-
trated in Figure 1.3.

Proof. Let H be some horizon for which we later take the limit to ∞. We can
rewrite the value function of the original MDP as

V π =
∑

a0:H ,s0:H

[
P (s0) π(a0 | s0)

H∏
t=1

π(at | st) P (st | at-1, st-1)
][H∑

T=0

γTR(aT , sT)
]

(1.7)

=
H∑
T=0

γT
∑

a0:H ,s0:H

R(aT , sT)P (s0) π(a0 | s0)
H∏
t=1

π(at | st) P (st | at-1, st-1)

(1.8)

=
H∑
T=0

γT
∑

a0:T ,s0:T

R(aT , sT)P (s0) π(a0 | s0)
T∏
t=1

π(at | st) P (st | at-1, st-1)

(1.9)

=
H∑
T=0

γT Ea0:T ,s0:T |π{R(aT , sT)} . (1.10)

In the second line we pulled the summation over T to the front. Note that the second
and third line are really different: the product is taken to the limit T instead of
H since we eliminated the variables aT+1:H , sT+1:H with the summation. The last
expression has already the form of a mixture model, where T is the mixture variable,
γT is the mixture weight (P (T) = γT (1− γ) the normalized geometric prior), and
the last term is the expected reward in the final time slice of a finite-time MDP of
length T (since the expectation is taken over a0:T , s0:T |π).

The likelihood in our mixture model can be written as

L(π) = P (R;π) (1.11)

= (1− γ)
∞∑
T=0

γTP (R |T ;π) (1.12)

∝ (1− γ) Ea0:T ,s0:T |π{R(aT , sT)} (1.13)
= (1− γ) V π . (1.14)

The proportionality stems from the definition P (R | at, st) ∝ R(aT , sT) of R.

6

r1 r2r0

a1a0 a2a1a0a0

V =
P

t γ
t E{rt}

P (r0:2, ξ)P (R, ξ) =
P2

T=0 P (T) P (R, ξ |T)

R R R

s1s0 s0 s1 s2s0

L =
P

T P (T) P (R |T)

a2a1a0

s0 s1 s2

Figure 1.3: Illustration of the equivalence between the mixture and the original MDP.

In appendix .1 we remark on the following points in some more detail:

(i) the interpretation of the mixture with death probabilities of the agent,

(ii) the difference between the models w.r.t. the correlation between rewards,

(iii) and approaches to consider exponentiated rewards as observation likelihoods.

1.2 Expectation Maximization in mixtures of variable length Dy-
namic Bayesian Networks

The algorithms we will derive in this section are independent from the context of
MDPs. We investigate the general case of a variable length stationary Markov
process where we have observations only at the start and the final time. The length
of the process is unknown and we assume a mixture of variable length processes
where the length prior is the geometric distribution P (T) = γT (1−γ) for γ ∈ [0, 1).
We first derive EM algorithms for an unstructured Markov process on one random
variable which is then easily generalized to structured DBNs.

1.2.1 Single variable case

Let ξ be a random variable in the domain X ∗ =
⋃∞
T=0 X T+1, that is, a variable

length trajectory in X (in other terms, a finite but arbitrary length string over the
alphabet X). We use the notation ξ = (x0, .., xT) for a length-T trajectory and
write |ξ| = T . We consider T a random variable and assume an auxiliary binary
random variable R depending on the final state xT which represents some generic
observation. Specifically, we consider the joint

P (R, ξ, T ; θ) = P (R | ξ; θ) P (ξ |T ; θ) P (T)

= P (R |xT ; θ)
[T-1∏
t=0

P (xt+1 |xt; θ)
]
P (x0; θ) δ|ξ|T P (T) . (1.15)

Here, δ|ξ|T is one for |ξ| = T and zero otherwise; P (T) is a prior over the length
of the process; P (x0; θ) is the start distribution of the process; P (xt+1 |xt; θ) is
the transition probability; and P (R |xT ; θ) is the probability of the R-event which
depends only on the final state. The joint is normalized since, when summing over
all ξ ∈ X ∗ with all lengths L = |ξ|,

∑
ξ∈X∗

P (ξ |T ; θ) =
∞∑
L=0

∑
x0,..,xL

[L-1∏
t=0

P (xt+1 |xt; θ)
]
P (x0; θ) δLT

=
∑

x0,..,xT

[T-1∏
t=0

P (xt+1 |xt; θ)
]
P (x0; θ) = 1 . (1.16)

7

For Expectation Maximization (EM) we assume R is observed and we want to
find parameters θ of the joint that maximize the likelihood
P (R; θ) =

∑
T,ξ P (R, ξ, T ; θ). The length T of the process and the whole trajectory

ξ itself are latent (non-observed) variables. Let q(ξ, T) be a distribution over the
latent variables. Consider

F (θ, q) := logP (R; θ)−D
(
q(ξ, T)

∣∣∣∣P (ξ, T |R; θ)
)

(1.17)

= logP (R; θ)−
∑
ξ,T

q(ξ, T) log
q(ξ, T)

P (ξ, T |R; θ)
(1.18)

=
∑
ξ,T

q(ξ, T) logP (R; θ) +
∑
ξ,T

q(ξ, T) logP (ξ, T |R; θ) +H(q) (1.19)

=
∑
ξ,T

q(ξ, T) logP (R, ξ, T ; θ) +H(q) (1.20)

EM will start with an initial guess of θ, then iterate finding a q that maximizes F
for fixed θ in the form of (1.17), and then finding a new θ that maximizes F for
fixed q in the form of (1.20). Let us first address the M-step. This will clarify which
quantities we actually need to compute in the E-step.

The M-step computes argmaxθ of

F (θ, q) =
∑
ξ,T

q(ξ, T) logP (R, ξ, T ; θ) +H(q) (1.21)

=
∑
ξ,T

q(ξ, T)
[

logP (R |xT ; θ) + logP (ξ |T ; θ) + logP (T)
]

+H(q) (1.22)

=
∑
ξ,T

q(ξ, T)
[

logP (R |xT ; θ) + logP (ξ |T ; θ)
]

+ terms indep of θ (1.23)

=
∑
ξ

∞∑
T=0

q(ξ, T)
[

logP (R |xT ; θ) +
T-1∑
t=0

logP (xt+1 |xt; θ)
]

(1.24)

=
∑
ξ

∞∑
T=0

q(ξ, T) logP (R |xT ; θ)

+
∑
ξ

∞∑
t=0

∞∑
T=t+1

q(ξ, T) logP (xt+1 |xt; θ) (1.25)

=
∑
x

[∞∑
T=0

q(xT =x, T)
]

logP (R |xT =x; θ)

+
∑
x′,x

[∞∑
t=0

∞∑
T=t+1

q(xt+1 =x′, xt=x, T)
]

logP (xt+1 =x′ |xt=x; θ) (1.26)

The last line uses that the process and the reward are stationary (i.e., P (xt+1 =
x′ |xt =x; θ) does not explicitly depend on t and P (R |xT =x; θ) does not depend
explicitly on T). The last equation clarifies that the E-step actually only needs to
return the quantities in the brackets. The exact E-step is

q∗(ξ, T) = P (ξ, T |R; θold) =
P (R | ξ, T ; θold) P (ξ |T ; θold) P (T)

P (R; θold)
(1.27)

8

Let us investigate the bracket terms in (1.26) for the exact E-step in more detail:

∞∑
T=0

q∗(xT , T) =
1

P (R; θold)
P (R |xT ; θold)

∞∑
T=0

P (xT ; θold) P (T) (1.28)

∞∑
t=0

∞∑
T=t+1

q∗(xt+1, xt, T) =
1

P (R; θ)

∞∑
t=0

∞∑
T=t+1

P (R |xt+1, T ; θold)

· P (xt+1 |xt; θold) P (xt; θold) P (T) (1.29)

At this point we use the property of the geometric length prior

P (T = t+ τ) =
1

1− γ
P (T = t) P (T = τ) (1.30)

∞∑
t=0

∞∑
T=t+1

q∗(xt+1, xt, T) =
1

P (R; θ)(1− γ)

∞∑
t=0

∞∑
τ=1

P (R |xt+1, T = t+ τ ; θold)

· P (T =τ) P (xt+1 |xt; θold) P (xt; θold) P (T = t)
(1.31)

=
1

P (R; θ)(1− γ)

[∞∑
τ=1

P (R |xt+1, T = t+ τ ; θold) P (T =τ)
]

· P (xt+1 |xt; θold)
[∞∑
t=0

P (xt; θold) P (T = t)
]

(1.32)

In the last line we used that P (R |xt+1, T = t + τ ; θold) does not explicitly depend
on t but only on the time-to-go τ . We finally define quantities

α(xt) :=
∞∑
t=0

P (xt; θold) P (T = t) (1.33)

β(xt+1) :=
1

1− γ

∞∑
τ=1

P (R |xt+1, T = t+ τ ; θold) P (T =τ) (1.34)

=
1

1− γ

∞∑
τ=0

P (R |x′t, T = t+ τ ; θold) P (T =τ + 1) (1.35)

such that the relevant parts of F (θ, q∗) for the M-step can be written more com-
pactly. Equation (1.26) now reads

F (θ, q∗) =
∑
x

[
P (R |xT ; θold) α(x)

]
logP (R |xT ; θ)

+
∑
x′,x

[
β(x′) P (x′ |x; θold) α(x)

]
logP (xt+1 |xt; θ) (1.36)

Note, α(x) and β(x) are just quantities that are defined in equations (1.33) and
(1.35) and useful for the EM algorithm, but have no explicit interpretation yet.
They are analogous to the typical forward and backward messages in Baum-Welch,
but different in that there are no observations and that they incorporate the whole
mixture over variable length processes and exploit the geometric length prior. If one
likes, α can be interpreted as the last-state-occupancy-probability averaged over the
mixture of all length processes; and β can be interpreted as (is proportional to) the
probability of observing R in the future (not immediately) averaged over the mixture

9

of all length processes. The explicit M-step depends on the kind of parameterization
of P (R |xT ; θ) and P (xt+1 |xt; θ) but is straight-forward to derive from (1.36). We
will derive explicit M-steps in the (PO)MDP context in the next section.

1.2.2 Explicit E-step algorithms

In the remainder of this section we describe efficient algorithms to compute α(x)
and β(x) as defined in (1.33) and (1.35). For brevity we write P ≡ P (x′ |x; θold)
as a matrix and α ≡ α(x) and S ≡ P (x0 =x) as a vectors. The α quantity can be
computed iteratively in two ways: We define another quantity at (which directly
corresponds to the typical forward message) and from (1.33) get

at := P (xt=x) = P at-1 , a0 = S (1.37)

αh =
h∑
t=0

at P (T = t) = αh-1 + (1− γ)γh ah , α0 = (1− γ) S (1.38)

Iterating both equations together can be used to compute α approximately as αh
in the limit h→∞. Alternatively we can use

αh =
h∑
t=0

at P (T = t) = (1− γ)
[
a0 +

h∑
t=1

at γ
t
]

= (1− γ)
[
S +

h∑
t=1

P at-1 γ
t
]

= (1− γ)
[
S + P

h-1∑
t=0

at γ
t+1
]

= (1− γ) S + γ P αh-1 (1.39)

as a direct recursive equation for αh. Analogously we have two ways to compute β
(a row vector). With R ≡ P (R |xT =x) the direct computation of (1.35) is:

bτ := P (R |xt=x, T = t+ τ) = bτ-1 P , b0 = R (1.40)

βh =
1

1− γ

h∑
τ=0

bτ P (T =τ + 1) = βh-1 + γh+1 bh(x) , β0 = γ b0 (1.41)

And a second way to compute β is

βh =
1

1− γ

h∑
τ=0

bτ P (T =τ + 1) = γb0 +
h∑
τ=1

bτ γ
τ+1

= γR+
h∑
τ=1

bτ-1 P γτ+1 = γR+ γ
[h-1∑
τ=0

bτ γ
τ+1
]
P

= γR+ γ βh-1 P (1.42)

in the limit h → ∞. Note that, in the context of MDPs, this equation is exactly
equivalent to Policy Evaluation, i.e., the computation of the value function for a
fixed policy. We will discuss this in more detail in section 1.3.2.

When choosing to compute also the at and bt quantities we can use them to
compute the length posterior and likelihood,

P (R |T = t+ τ) =
∑
x

P (R |xt=x, T = t+ τ) P (xt=x) = b>τ at (1.43)

10

P (R) =
∑
T

P (R |T) P (T) (1.44)

P (T |R) = P (R |T) P (T)/P (R) (1.45)

E{T |R} =
∑
T

T P (T |R) (1.46)

In particular, equations (1.45) and (1.44) can be computed while iterating (1.37)
and (1.40) and thereby provide a heuristic to choose the horizon (stopping criterion
of the iteration) on the fly. On the other hand (1.39) and (1.42) are update equations
for α and β which can be used in an incremental E-step: we can reuse the α and β
of the previous EM-iterations as an initialization and iterate equations (1.39) and
(1.42) only a few steps. This corresponds to computing parts of α and β with old
parameters θold from previous EM-iterations and only the most recent updates with
the current parameters. The horizon h implicitly increases in each EM-iteration.
Algorithms 1 and 2 explicitly describe the standard E-step and the incremental
version.

Algorithm 1 Standard E-step
Input: vectors S, R, matrix P , scalars γ, H
Output: vectors α, β, P (T |R), scalars P (R), E{T |R}

1: initialize a = S, b = R, α = a, β = γ b, L(0) = a>b
2: for h = 1 to H do
3: a← P a
4: L(2h− 1) = γ2h−1 a>b
5: b← b P
6: L(2h) = γ2h a>b
7: α += γh a
8: β += γh+1 b
9: end for

10: L *= 1− γ
11: α *= 1− γ
12: P (R) =

∑2H
t=0 L(t)

13: P (T = t|R) = L(t)/P (R)
14: E{T |R} = [

∑2H
t=0 tL(t)]/P (R)

Algorithm 2 Incremental E-step
Input: vectors α, β, S, R, matrix P , scalars γ, H
Output: vector α, β, scalar P (R)

1: for h = 1 to H do
2: α← (1− γ) S + γ P α
3: β ← γ [R+ β P]
4: end for
5: P (R) = a>R

1.2.3 Structured DBN case

In the case of a structured DBN the process is defined on more than one variable.
Generally the transition probability P (xt+1 |xt; θ) is then replaced by a set of factors

11

(or conditional probability tables) that describes the coupling between two consecu-
tive time slices. It is straight-forward to generalize algorithms 1 and 2 to exploit the
structure in such a DBN: In each time slice we now have several random variables
s1t , .., s

k
t , a

1
t , .., a

l
t. We choose the notation s1t , .., s

k
t for a set of variables which are a

separator of the Markov process and a1
t , .., a

l
t are the remaining variables in a time

slice. For exact inference we have to maintain quantities α(s) and β(s) over the
separator clique. To exploit the DBN structure we need to replace the transition
matrix multiplications (lines 3 and 5 in Algorithm 1, and lines 2 and 3 in Algorithm
2) with other inference techniques. The simplest solution is to use the elimination
algorithm. For instance, instead of the matrix multiplication a ← Pa (line 3 of
Algorithm 1), we think of P as a list of factors over the variables (st, at, st+1) that
couple two time slices, a is a factor over the “left” separator clique (st), we pass the
list of factors {P, a} to the elimination algorithm and query for the marginal over
the “right” separator clique (st+1). This yields the new assignment to a. When we
choose a good elimination order this procedure is equivalent to the Junction Tree
method described in (Murphy, 2002).

Concerning the M-step, the energy expression (1.36) generalizes to

F (θ, q∗) =
∑
a,s

[
P (R | a, s; θold) P (a | s; θold) α(s)

]
logP (R | a, s; θ) P (a | s; θ)

+
∑
s′,a,s

[
β(s′) P (s′ | a, s; θold) P (a | s; θold) α(s)

]
logP (s′ | a, s; θ) P (a | s; θ)

(1.47)

1.3 Application to MDPs

1.3.1 Expectation-Maximization with a tabular policy

A standard MDP is a DBN with random variables st and at in each time slice
where the state st is a separator. In the simplest case we parameterize the policy
P (at | st; θ) using a full CPT,

P (at=a | st=s; θ) = πas . (1.48)

The energy (1.47) reads (neglecting terms independent of π)

F (θ, q∗) =
∑
a,s

[
P (R|a, s) πold

as α(s)
]

log πas

+
∑
s′,a,s

[
β(s′) P (s′|a, s) πold

as α(s)
]

log πas . (1.49)

Since πas is constrained to normalize over a for each s this energy is maximized by

πnew
as = πold

as

[
P (R|a, s) +

∑
s′

β(s′) P (s′|a, s)
]
. (1.50)

The two terms in the brackets correspond to the expected immediate reward plus
the expected future reward as predicted by β – the brackets are exactly equivalent
to the classical Q-function.

In the case of a plain unstructured MDP we can also derive a greedy and usually
faster version of the M-step, given as

∀s : πnew
as = δ(a, a∗(s)) , a∗(s) = argmax

a

[
P (R|a, s) +

∑
s′

β(s′) P (s′|a, s)
]
.

(1.51)

12

This update corresponds to a greedy version of the previous M-step. If we would
iterate (1.50) without recomputing the bracket term each time (skipping interme-
diate E-steps) we would converge to this greedy M-step. Further, as we know
from Reinforcement Learning, the greedy M-step can be thought of as exploiting
our knowledge that the optimal policy must be a deterministic one (in the fully
observable case).

Note however that this does not generalize to arbitrarily structured DBNs. In
fact, in the POMDP case that we investigate later we are not aware of such a greedy
version of the M-step.

1.3.2 Relation to Policy Iteration and Value Iteration

So far we have developed our approach for a plain unstructured MDP. It turns out
that in this case the E- and M-step are very closely related to the policy evaluation
and update steps in standard Policy Iteration.

We introduced the mixture of MDPs in a way such that the likelihood is pro-
portional to the expected future return. Hence, for the unstructured MDP, b(s) :=
P (R | st=s, T = t+τ ;π) as defined in equation (1.40) is proportional to the expected
reward in τ time steps in the future conditioned on the current state. This is also
the value function of the finite-time MDP of length τ . Hence, the β(s) defined in
(1.35) is proportional to the value function V π(s) of the original MDP. Analogously,
the bracket term in the M-step (1.50) is proportional to the Q-function Qπ(a, s) in
the original MDP.

We conclude that the E-step in an unstructured MDP is a form of Policy Evalu-
ation since it also yields the value function. However, quite different to traditional
Policy Evaluation, the E-step also computes α’s, i.e., probabilities to visit states
given the current policy, which may be compared to previous approaches like Di-
verse Densities (in the context of subgoal analysis (McGovern and Barto, 2001)) or
Policy Search by Density Estimation (Ng et al., 1999). The full E-step provides us
with posteriors over actions, states and the total time. In practice we can use the
α’s in an efficient heuristic for pruning computations during inference (see section
1.3.3 and appendix .2). Further, the E-step generalizes to arbitrarily structured
DBNs and thereby goes beyond standard Policy Evaluation, particularly when us-
ing approximate inference techniques like message passing or approximate belief
representations.

Concerning the M-step, in the unstructured MDP the greedy M-step is identical
to the policy update in Policy Iteration. That means that one iteration of the
EM will yield exactly the same policy update as one iteration of Policy Iteration
(provided one does exact inference and exact value function computation without
time horizon cutoffs). Again, the M-step goes beyond a standard policy update in
the generalized case. This becomes particularly apparent when in structured DBNs
(e.g. the POMDP case in section 1.4) the full posteriors computed via inference
(including forward propagated messages analogous to α’s) are necessary for the
M-step.

In summary,

Lemma 1. The EM-algorithm on an unstructured MDP using exact inference and
the greedy M-step is equivalent to Policy Iteration in terms of the policy updates
performed.

13

(a) (b)

Figure 1.4: (a) State visiting probability calculated by EM for some start and goal state. The
radii of the dots are proportional to P (s ∈ ξ |R). (b) The probability of reaching the goal (for
EM) and the value calculated for the start state (PS) against the cost of the planning algorithms
(measured by evaluations of P (s′|a, s)).

Interestingly, this also means they are equivalent w.r.t. convergence. (Recall
that Policy Iteration is guaranteed to converge to the global optimum whereas EM-
algorithms are only guaranteed to converge to local optima.) The computational
costs of both methods may differ depending on the implementation (see below).

Finally, the incremental E-step of Algorithm 2 only updates the β and α func-
tions by propagating them for H steps. For H = 1 and when using the greedy
M-step this is equivalent to Value Iteration. In a structured (but fully observable!)
MDP, we have the same equivalence with structured Value Iteration.

1.3.3 Discrete maze examples

Efficiency. We first tested the EM algorithm with standard E-step and greedy
M-step on a discrete maze of size 100 × 100 and compared it to standard Value
Iteration (VI) and Policy Iteration (PI). Walls of the maze are considered to be
trap states (leading to unsuccessful trials) and actions (north, south, east, west,
stay) are highly noisy in that with a probability of 0.2 they lead to random tran-
sitions. In the experiment we chose a uniform time prior (discount factor γ = 1),
initialized π uniformly, and iterated the policy update k = 5 times. To increase
computational efficiency we exploited that the algorithm explicitly calculates pos-
teriors which can be used to prune unnecessary computations during inference as
explained in appendix .2. For policy evaluation in PI we performed 100 iterations
of standard value function updates.

Figure 1.4(a) displays the posterior state visiting probabilities P (s ∈ ξ |R) of
the optimal policy computed by the EM for a problem where a reward of 1 is given
when the goal state g is reached and the agent is initialized at a start state s.
Computational costs are measured by the number of evaluations of the environ-
ment P (s′|a, s) needed during the planning procedure. Figure 1.4(b) displays the
probability of reaching the goal P (R;π) against these costs. Note that for EM (and
PI) we can give this information only after a complete E- and M-step cycle (policy
evaluation and update) which are the discrete dots (triangles) in the graph. The
graph also displays the curve for VI, where the currently calculated value VA of the
start state (which converges to P (R) for the optimal policy) is plotted against how
often VI evaluated P (s′|a, s).

In contrast to VI and PI, the inference approach takes considerable advantage
of knowing the start state in this planning scenario: the forward propagation allows
for the pruning and the early decision on cutoff times in the E-step as described in

14

(a) k = 0
P (R)=1.5e-5

(b) k = 1
P (R)=0.17

(c) k = 2
P (R)=0.44

(d) k = 3
P (R)=0.48

(e) k = 4
P (R)=0.61

(f)

(g)

Figure 1.5: (a-e) State visiting probabilities for various EM-iterations k. The start and goal
states are to the bottom left and right, respectively. The radii of the dots are proportional to
P (s ∈ ξ |R). (f) The different possible pathways lead to a multi-modal time posterior P (T |R).
(g) The trade-off between the expected time to goal (mean of P (T |R)) and the probability to
reach the goal. The dots corresponds to k = 1, .., 4 (from left to right).

appendix .2. It should thus not surprise and not be overstated that the EM is more
efficient in this specific scenario. Certainly, a similar kind of forward propagations
could also be introduced for VI or PI to achieve equal efficiency. Nonetheless, our
approach provides a principled way of pruning by exploiting the computation of
proper posteriors. The policies computed by all three methods are equal for states
which have significantly non-zero state visiting probabilities.

Multi-modal time posteriors. The total time T plays a special role as a random
variable in our mixture model. We use another simple experiment to illustrate
this special role by considering the total time posteriors. Modelling walls as trap
states leads to interesting trade-offs between staying away from walls in favor of
security and choosing short paths. Figure 1.5 displays a 15x20 maze with three
possible pathways from the start (bottom left) to the goal (bottom right) state.
The direct pathway is a narrow aisle clinched between two walls and thus highly
risky. The next one up requires a step through a narrow doorway. The most top
one is secure but longest. The five Figures illustrate the state visiting probability
P (s ∈ ξ |R) for random walks (k = 0) and the policies calculated by EM for
k = 1, .., 4 iterations. Also the success probability P (R) is indicated. Figure 1.5(f)
displays the corresponding time posteriors P (T |R) for the different k’s. Interesting
is the multi-modality of these time posteriors in that specific environment. The
multi-modality in some way reflects the topological properties of the environment:
that there exists multiple possible pathways from the start to the goal with different
typical lengths (maxima of the time posterior) and different success probabilities
(area (integral) of a mode of the time posterior). Already for k = 0 the multi-
modality exhibits that, besides the direct pathway (of typical length ≈ 15), there
exist alternative, longer routes which comprise significant success probability. One
way to exploit this insight could be to choose a new time prior for the next inference
iteration that explicitly favors these longer routes. Figure 1.5(g) nicely exhibits the

15

trade-off between the expected time to goal and the probability to reach the goal.

1.3.4 Stochastic optimal control

Gaussian belief state propagation. Next we want to show that the framework
naturally allows to transfer other inference techniques to the problem of solving
MDPs. We address the problem of stochastic optimal control in the case of a
continuous state and control space. A standard inference technique in continuous
state spaces is to assume Gaussian belief states as representations for a’s and b’s
and propagate forward-backward and using the unscented transform to handle also
non-linear transition dynamics (see (Murphy, 2002) for an overview on inference
techniques in DBNs). Note that using Gaussian belief states implies that the effec-
tive value function (section 1.3.2) becomes a mixture of Gaussians.

All the equations we derived remain valid when reinterpreted for the continuous
case (summations become integrations, etc) and the exact propagation equations
(1.37) and (1.40) are replaced by propagations of Gaussian belief states using the
unscented transform. In more detail, let N (x, a,A) be the normal distribution over
x with mean a and covariance A and let N (x, a,A) be the respective non-normalized
Gaussian function with N (a, a,A) = 1. As a transition model we assume

P (x′|u, x) = N (x′, φ(u, x), Q(u)) , Q(u) = C + µ|u|2 I (1.52)

where φ(u, x) is an non-linear function depending on the current state x and the
control signal u, C is a constant noise covariance, and we introduced a parameter
µ for an additional noise term that is squared in the control signal. With the
parameterization at(x) = N (x, at, At) and bτ (x) = N (x, bτ , Bτ) (note that b’s
always remain non-normalized Gaussian likelihoods during propagation), forward
and backward propagation read

(at, At) = UTφ(at−1, AT−1) (1.53)
(bτ , Bτ) = UTφ−1(bτ−1, Bτ−1) , (1.54)

where UTφ(a,A) denotes the unscented transform of a mean and covariance under a
non-linear function. In brief, this transform deterministically considers 2n+1 points
(say with standard deviation distance to the mean) representing the Gaussian. In
the forward case (the backward case) it maps each point forward using φ (backward
using φ−1), associates a covariance Q(u) (a covariance φ′−1 Q(u) φ′−1T , where φ′−1

is the local inverse linearization of φ at each point) with each point, and returns
the Gaussian that approximates this mixture of Gaussians. Further, for any t and
τ we have

P (R |T = t+ τ) = N (at, bτ , At +Bτ) (1.55)
P (xt=x |R, T = t+ τ) = N (x, ctτ , Ctτ) ,

C−1
tτ = A−1

t +B−1
τ , ctτ = Ctτ (A−1

t at +B−1
τ bτ) (1.56)

(1.57)

The policy and the M-step. In general, the policy is given as an arbitrary
non-linear function π : x 7→ u. Clearly, we cannot store such a function in memory.
However, via the M-step the policy can always be implicitly expressed in terms of
the b-quantities of the previous E-step and numerically evaluated at specific states
x. This is particularly feasible in our case because the unscented transform used
in the belief propagation (of the next E-step) only needs to evaluate the transition

16

function φ (and thereby π) at some states; and we have the advantage of not
needing to approximate the function π in any way. For the M-step (1.51) we need
to maximize the mixture of Gaussians (see (1.35))

q̂τ (u, x) :=
[
P (R|u, x) +

∫
x′
P (x′|u, x) β(x′)

]
(1.58)

β(x′) =
1

1− γ

∞∑
τ=0

P (T =τ + 1) N (x′, bτ−1, Bτ−1) (1.59)

We use a gradient ascent. The gradient for each component of the mixture of
Gaussians is:

qτ (u, x) :=
∫
x′
P (x′|u, x) N (x′, bτ−1, Bτ−1) (1.60)

= |2πBτ−1|1/2 N (bτ−1, φ(u, x), Bτ−1 +Q(u)) (1.61)

∂uqτ (u, x) = −qτ (u, x)
[
hT
(
∂uφ(u, x)

)
− µu

(
tr(A−1)− hTh

)]
A := Bτ−1 +Q(u) , h := A−1 (φ(u, x)− b) (1.62)

We perform this gradient ascent whenevery we query the policy at a specific state
x.

Examples. Consider a simple 2-dimensional problem where the start state is
distributed around zero via a0(x) = N (x, (0, 0), .01I) and the goal region is de-
termined by P (R |x) = N (x, (1, 1), diag(.0001, .1)). Note that this goal region
around (1, 1) is heavily skewed in that rewards depend more on the precision along
the x−dimension than the y−dimension. We first consider a simple control law
φ(u, x) = x+ .1u and the discount factor γ = 1. When choosing µ = 0 (no control-
dependent noise), the optimal control policy will try to jump directly to the goal
(1, 1). Hence we first consider the solution when manually constraining the norm
of |u| to be small (effectively following the gradient of P (r= 1 |ut = u, xt = x;π)).
Figure 1.6(a,b) shows the learned control policy π and the forward simulation given
this policy by displaying the covariance ellipses for a0:T (x) after k = 3 iterations.
What we find is a control policy that reduces errors in x−dimension more strongly
than in y−direction, leading to the tangential approach to the goal region. This is
related to studies on redundant control or the so-called uncontrolled manifold.

Next we can investigate what the effect of control-dependent noise is without
a constraint on the amplitude of u. Figure 1.6(c,d) displays results (after k = 3
iterations) for µ = 1 and no additional constraints on u. The process actually
resembles a golf player: the stronger the hit, the more noise. The optimal strategy
is to hit fairly hard in the beginning, hopefully coming closer to the goal, such that
later a number of smaller and more precise hits can be made. The reason for the
small control signals around the goal region is that small steps have much more
accuracy and reward expectation is already fairly large for just the x−coordinate
being close to 1.

Finally we think of x being a phase space and consider the dynamics φ(u, x) =
(x1 + .1x2, x2 + .1u) where u is the 1-dimensional acceleration of the velocity x2, and
x1 is a position. This time we set the start and goal to (0, 0) and (1, 0) respectively,
both with variance .001 and choose µ = 10. Figure 1.6(e,f) display the result and
show nicely how the learned control policy approaches the new position on the
x−axis by first gaining and then reducing velocity.

17

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.6: Learned policies (left) and forward simulation (a’s) of these policies (right) for aspheric
Gaussian-shaped targets. (a,b) are for the case of restricted action amplitude (the walker model).
(c,d) are for unconstrained amplitude (the golfer model). And (e,f) are for the approach to a new
position under phase space dynamics.

1.4 Application to POMDPs

A stationary, partially observable Markov decision process (POMDP, see e.g. (Kael-
bling et al., 1998)) is given by four time-independent probability functions,

the initial world state distribution P (s0 =s)
the world state transitions P (st+1 =s′ | at=a, st=s)
the observation probabilities P (yt=y | st=s)
the reward probabilities P (rt=r | at=a, st=s) .

These functions are considered known. We assume the world states, actions, and
observations (st, yt, at) are discrete random variables while the reward rt is a real
number.

The POMDP only describes one “half” of the process to be described as a DBN
— the other half is the agent interacting with the environment. Our point of view
is that the agent could use an arbitrary “internal machinery” to decide on actions.
FSCs are a simple example. However, a general DBN formulation of the agent’s
internal machinery allows us to consider much more structured ways of behavior
organization, including factorized and hierarchical internal representations (see, e.g.,
Theocharous et al., 2004; Toussaint et al., 2008). In the remainder of this section
we investigate a policy model that is slightly different to finite state controllers
but still rather simple. However, the approach is generally applicable to any DBN
formulation of the POMDP and the agent.

To solve a given POMDP challenge an agent needs to maintain some internal
memory variable (if not the full belief state) that represents information gained
from previous observations and actions. We assume that this variable is updated
depending on the current observation and used to gate reactive policies rather than
to directly emit actions. More precisely, the dynamic Bayesian network in Figure

18

(a)

a0

b1

y1y0

b0

a1 y2

b2

r1r0 r2

a2

s0 s1 s2

(b)

a0 y1y0 a1 y2

r1r0 r2

a2

n0 n1 n2

s0 s1 s2

Figure 1.7: (a) DBN of the POMDP and policy with internal memory bt; the time is unbounded
and rewards are emitted at every time step. (b) For comparison: the DBN of a POMDP with a
standard FSC, with “node state” nt.

1.7(a) captures the POMDP and the agent model which is defined by the

initial internal memory distribution P (b0 =b) =: νb
internal memory transition P (bt+1 =b′ | bt=b, yt=y) =: λb′by
reactive policies P (at=a | bt=b, yt=y) =: πaby .

Here we introduced bt as the agent’s internal memory variable. It is comparable
to the “node state” in finite state controllers (Figure 1.7(b)), but differs in that it
does not directly emit actions but rather gates reactive policies: for each internal
memory state b the agent uses a different “mapping” πaby (i.e. a different reactive
policy) from observations to actions.

As for the MDP case, solving the POMDP in this approach means to find
parameters θ = (ν, λ, π) of the DBN in Figure 1.7 that maximize the expected
future return V θ = E{

∑∞
t=0 γ

t rt; θ} for a discount factor γ ∈ [0, 1).

M-step. The M-steps for the parameters can directly be derived from the free
energy in the form (1.47). We have:

πnew
aby =

πold
aby

Cby

∑
s

[
P (R|a, s) +

∑
b′s′

β(b′, s′) λb′by P (s′|a, s)
]
P (y|s) α(b, s) ,

(1.63)

λnew
b′by =

λold
b′by

C ′by

∑
s′,a,s

β(b′, s′) P (s′|a, s) πaby P (y|s) α(b, s) , (1.64)

νnew
b =

νold
b

C ′′b

∑
x

β(b, s) P (s0 =s) , (1.65)

where Cby, C ′by and C ′′b are normalization constants. Note that in these updates the
α’s (related to state visiting probabilities) play a crucial role. Also we are not aware
of a greedy version of these updates that proved efficient (i.e. without immediate
convergence to a local minimum).

19

Complexity. Let S,B,A and Y momentarily denote the cardinalities of random
variables s, b, a, y, respectively. The main computational cost accumulates during
a- and b-propagation; with the separator (bt, st) both of which have complexity
O(H B2 S2). Here and below, S2 scales with the number of non-zero elements in the
transition matrix P (s′|s) (assuming non-zero action probabilities). We always use
sparse matrix representations for transition matrices. The number of propagations
H scales with the expected time of reward (for a simple start-goal scenario this is
the expected time to goal). Sparse vector representations of α’s and β’s further
reduce the complexity depending on the topological dimensionality of P (s′|s). The
computational complexity of the M-step scales with O(AY B2S2); in total this adds
to O((H +AY)B2S2) for one EM-iteration.

For comparison, let N denote the number of nodes in a FSC. The computation of
a policy gradient w.r.t. a single parameter of a FSC scales with O((H +AY)N2S2)
(taken from (Meuleau et al., 1999), top of page 7). A fully parameterized FSC
has NA+N2Y parameters, bearing a total complexity of O((H +AY)N4S2Y) to
compute a full policy gradient.

For EM-learning as well as gradient ascent, the complexity additionally multi-
plies with the number k of EM-iterations respectively gradient updates.

1.4.1 POMDP experiments

Scaling. The POMDP EM-algorithm has no free parameters except for the ini-
tializations of λb′by, πaby, and νb. Roughly, we initialized νb and πaby approximately
uniformly, while λb′by was initialized in a way that favors not to switch the internal
memory state, i.e., the diagonal of the matrix λb′b· was initialized larger than the
off-diagonal terms. More precisely, we first draw non-normalized numbers

πaby ∼ 1 + 0.1U([0, 1]) , λb′by ∼ 1 + 5 δb′b + 0.1U([0, 1]) , νb = 1 (1.66)

where U([0, 1]) is the uniform distribution over [0, 1], and then normalize these
parameters.

To start with, we test the scaling behavior of our EM-algorithm and compare
it with that of gradient ascent for a FSC (FSC-GA). We tried three options for
coping with the problem that the simple policy gradient in (Meuleau et al., 1999)
ignores the normalization constraints of the parameters: (1) projecting the gradient
on the simplex, (2) using a step-size-adaptive gradient ascent (RPROP) with added
soft-constraint gradients towards the simplex, (3) using MATLAB’s gradient-based
constraint optimization method ‘fmincon’. The second option gave the best results
and we refer to those in the following. Note that our algorithm does not have such
problems: the M-step assigns correctly normalized parameters. Figure 1.8 displays
the results for the simple maze considered in (Meuleau et al., 1999) for various maze
sizes. Our policy model needs B = 2 internal memory states, the FSC N = 5 graph
nodes to solve these problems. The discount factor was chosen γ = .99. The results
confirm the differences we noticed in the complexity analysis.

Training the memory to gate primitive reactive behaviors. To exemplify
the approach’s ability to learn an appropriate memory representation for a given
task we investigate further maze problems. We consider a turtle, which can move
forward, turn right or left, or wait. With probability 1−ε this action is successful;
with probability ε = .1 the turtle does not respond. The state space is the cross
product of positions and four possible orientations, and the observations are a 4 bit
number encoding the presence of adjacent walls relative to the turtle’s orientation.

20

(a) (b)

Figure 1.8: (a) A simple scalable maze from (Meuleau et al. 1999), here with 330 states. The
start (goal) position is marked gray (black). The robot has five actions (north, south, eat, west,
stay) and his observation is a 4 bit number encoding the presence of adjacent walls. (b) Running
times of EM-learning and FSC gradient ascent that show how both methods scale with the maze
size. The lines are medians, the errorbars min and max of 10 independent runs for each of the
various maze sizes. (For maze sizes beyond 1000 we display only 1 run).

Further, whenever the agent reaches the goal (or a zero-reward drain state, see
below) it is instantly reset to the start position.

Figures 1.9(a) and 1.9(b) display two small mazes with two specific difficulties:
The interior states and also the entries and exits (cross-shaded) of halls in 1.9(a)
all have the same observation 0000 and are highly susceptible for the agent to get
lost. For B = 2 (that is, when the latent variable b has two possible values), the
turtle learns a wall-following strategy as a basic reactive behavior, while the internal
memory is used only at the exists and entrances to halls: for internal state b = 1 and
observation y = 0000 the turtle turns left and switches to b = 2, while for b = 2 and
y = 0000 the turtle goes straight and switches back to b = 1. The maze in Figure
1.9(b) is a binary-decision maze and poses the problem of remembering how many
junctions have passed already: To reach the goal, the turtle has to follow aisles
and at T-junctions make decisions [left, right, right, left]. For B = 3 the algorithm
finds the obvious solution: Each internal memory state is associated with simple
reactive behaviors that follows aisles and, depending on b, turn left or right at a
T-junction. A finite state controller would certainly find a very similar solution.
However, in our case this solution generalizes to situations when the corridors are
not straight: Figure 1.9(c, top left) displays a maze with 30 locations (number of
states is 480), where the start state is in the top left corner and the goal state in
the bottom right. Again, the turtle has to make decisions [left, right, right, left]
at T-junctions to reach the goal, but additionally has to follow complex aisles in
between. Unlike with FSCs, our turtle needs again only B = 3 internal memory
states to represent the current corridor. The shading in Figure 1.9(c) displays the
probability of visiting a location on a trajectory while being in memory state b = 1, 2
or 3.

Finally, we investigate the maze in Figure 1.9(d) with 379 locations (1516 turtle
states). The maze is a complex combination of corridors, rooms and junctions. On
this maze we also tested a normal robot (north, south, west, east actions with noise
ε = .1), learning curves for B = 3 for the left and right most goals are given in
Figure 1.10(a,b) and exhibit reliable convergence.4 We also investigated single runs

4As a performance measure we define the expected reward interval which is directly linked to
P (R). Consider a cyclic process that receives a reward of 1 every d time steps; the expected

future reward of this process is P (R) =
P∞
T=1 P (d T) = (1−γ)

P∞
T=1 γ

d T =
γd (1−γ)

1−γd . Inverting

21

(a)

S
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

G

��
��
��
��

(b) S

��
��
��
��

��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���

������
������
������
������

��
��
��
��

��
��
��
��

G

��
��
��
��b = 3

b = 2

b = 1

(c)

(d)

Figure 1.9: Further mazes considered in the experiments. (c): Top left is the maze with the start
(light gray), goal (bottom right) and drain-states (dark). The other three illustrations display the
internal memory state b (grey value ∝ bα(b, s) for b = 1, 2, 3) at different locations in the maze.
(d): Large maze with 1516 turtle states.

in the turtle case for the left most goal (Figure 1.10(c)) and the second left goal
(Figure 1.10(d) dashed line). Again, the turtle utilizes that aisle following can be
implemented with a simple reactive behavior; the internal memory is only used for
decision making in halls and at junctions. Since the aisle following behavior can
well be generalized to all goal settings we performed another experiment: we took
the final policy πaby learned for the left most goal as an initialization for the task of
finding the second left goal. Note that the start-to-goal paths are largely disjoint.
Still, the algorithm converges, particularly in the beginning, much faster (Figure
1.10(d) solid line), showing that such generalization is indeed possible.

To conclude these experiments, we can summarize that the agent learned internal
memory representations to switch between reactive behaviors. In the experiments
they mainly turned out to represent different corridors. Generalization of the reac-
tive behaviors to new goal situations is possible. Further, memorization is not time
bounded, e.g., independent of the length of an aisle the turtle agent can sustain the
current internal memory while executing the reactive aisle following behavior.

1.5 Conclusion

We introduced a framework for solving (PO)MDPs by translating the problem of
maximizing expected future return into a problem of likelihood maximization. One
ingredient for this approach is the mixture of finite-time models we introduced

this relation, we translate a given expected future reward into an expected reward interval via

d =
logP (R)−log(P (R)+1−γ)

log γ
. This measure is rather intuitive: The performance can directly be

compared with the shortest path length to the goal. Note though that in stochastic environment
even an optimal policy has an expected reward interval larger than the shortest path to goal.

22

1 100
0

66

400

iteration

fre
q

robot, left goal (100 runs)(a)

1 100
0

87

600

iteration

fre
q

robot, right goal (100 runs)(b)

1 100
0

89
150

700

iteration

fre
q

turtle, left goal (1 runs)(c)

1 100
0

59
100

500

iteration
fre

q

turtle (init), bottom−left goal (1 runs)(d)

Figure 1.10: Learning curves for the maze in Figure 1.9(d). The expected reward interval (see
footnote) is given over the number of EM-iterations. Solid: median over 100 independent trial
runs (with noisy initializations (1.66)), dashed and dotted: 2.5, 25, 75 and 97.5 percentiles, dotted
baseline: shortest path to the goal in the respective environment which were possible in the noise-
free case. The optimal controller in our stochastic case is necessarily above this baseline.

in section 1.1. We have shown that this approach establishes equivalence for ar-
bitrary reward functions, allows for an efficient inference procedure, propagating
synchronously forward and backward without pre-fixing a finite time horizon H,
and allows for the handling of discounting rewards. We also showed that in the case
of an unstructured MDP the resulting EM-algorithm using exact inference and a
greedy M-step is closely related to standard Policy Iteration.

However, unlike Policy Iteration, the EM-algorithm generalizes to arbitrary
DBNs and the aim of this approach is to transfer the full variety of existing in-
ference techniques to the problem of solving (PO)MDPs. This refers especially to
structured problem domains, where DBNs allow us to consider structured repre-
sentations of the environment (the world state, e.g. factorization or hierarchies) as
well as the agent (e.g. hierarchical policies or multiple agents). Inference techniques
like variational approaches, message-passing algorithms, or approximate belief rep-
resentations in DBNs can be used to exploit such structure in (PO)MDPs.

1.5.1 Follow-up and related work

We exemplified the approach for exact inference on unstructured MDPs, using Gaus-
sian belief state propagation on a non-linear stochastic optimal control problem, and
on a more complex DBN formulation of a POMDP problem. Recently there have
be a series of papers based on or closely related to the general framework that we
presented here. In (Toussaint et al., 2008) we extended the approach to learning
hierarchical controllers for POMDPs. In (Vlassis and Toussaint, 2009) we presented
a model-free Reinforcement Learning version of our EM approach. Hoffman et al.
(2008, 2009b) uses MCMC methods for approximate inference in this context and

23

generalize the EM algorithm for continuous MDPs (Hoffman et al., 2009a). Finally,
Peters and Schaal (2007); Kober and Peters (2009) developed similar EM techniques
in a robotics and model-free context.

An interesting issue for future research is to consider max-product BP (a gen-
eralization of Viterbi) in the context of planning. In the POMDP context, further
aspects to consider are: Can we use inference techniques also to estimate the number
of internal states we need to solve a problem (cf. Infinite Hidden Markov models
(Beal et al., 2002) as a method to learn the number of hidden states needed to
model the data)? Or are there efficient heuristics to add hidden states in a DBN,
e.g., analogous to how new nodes are added to FSCs in the Bounded FSCs approach
(Poupart and Boutilier, 2004)?

We hope that our approach lays new ground for a whole family of new, inference-
based techniques being applicable in realm of (PO)MDPs.

Acknowledgments

M.T. is grateful to the German Research Foundation (DFG) for the Emmy Noether
fellowship TO 409/1-3.

.1 Remarks

(i) The mixture of finite-time MDPs may be compared to a classical interpretation
of reward discounting: Assume the agent has a probability (1 − γ) of dying after
each time step. Then the distribution over his life span is the geometric distribution
P (T) = γT (1− γ). In our mixture of finite-time MDPs we treat each possible life-
span T separately. From the agent’s perspective, he knows that he has a finite life
span T but he does not know what it is – he lives in a mixture of possible worlds.
Each finite life span is terminated by a single binary reward (say, going to heaven or
hell). The agent’s behavior must reflect his uncertainty about his life span and act
by accounting for the probability that he might die now or later on, i.e., he must
“average” over the mixture of possible worlds he might live in.

(ii) In the original MDP, the rewards at two different time slices, say rt and
rt+1, are strongly correlated. The mixture of finite-time MDPs does not include
such correlations because the observations of reward at T = t and T = t + 1 are
treated by separate finite-time MDPs. However, since the expected future return
V π is merely a sum of reward expectations at different time slices such correlations
are irrelevant for solving the MDP and computing optimal policies.

(iii) Do exponentiated rewards as observation likelihoods lead to equivalence?
Let us introduce modified binary reward variables r̂t in every time slice with prob-
abilties

P (r̂t=1 | at, st) = eγ
tR(at,st) , R(at, st) := E{rt | at, st} . (67)

Then

logP (r̂0:T =1;π) = log Ea0:T ,s0:T {
T∏
t=0

P (r̂t=1 | at, st)} (68)

≥ Ea0:T ,s0:T {log
T∏
t=0

P (r̂t=1 | at, st)} (69)

= Ea0:T ,s0:T {
T∑
t=0

γtR(at, st)} (70)

24

= V π (71)

That is, maximization of P (r̂0:T = 1;π) is not equivalent to maximization of V π.
However, this points to a formulation in terms of a Kullback-Leibler divergence
minimization: We have

V π = Ea0:T ,s0:T {log
T∏
t=0

P (r̂t=1 | at, st)} (72)

=
∑

a0:T ,s0:T

[
P (s0) π(a0 | s0)

T∏
t=1

π(at | st) P (st | at-1, st-1)
]

· log
[T∏
t=0

exp{γtR(at, st)
]

(73)

=
∑

a0:T ,s0:T

p(a0:T , st:T |π) log q(a0:T , st:T) (74)

where we defined

p(a0:T , st:T |π) = P (s0) π(a0 | s0)
T∏
t=1

π(at | st) P (st | at-1, st-1) (75)

q(a0:T , st:T) =
T∏
t=0

exp{γtR(at, st)} (76)

The first distribution p is the prior trajectory defined by the policy π disregarding
any rewards. The second “distribution” (if one normalizes it) q(a0:T , s0:T) has a
very simple form, it fully factorizes over time and in each time slice we have the
exponentiated reward with “temperature” γ−t. If q(s0:T) is normalized, we can also
write the value in terms of a Kullback-Leibler divergence,

V π = −D
(
p
∣∣∣∣ q)+H(p) . (77)

.2 Pruning computations

Consider a finite state space and assume that we fixed the maximum allowed time
T by some upper limit TM (e.g., by deciding on a cutoff time based on the time
posterior computed on the fly, see below). Then there are potentially large regions
of the state space on which we may prune computations, i.e., states s for which the
posterior P (st = s |T = t + τ) = 0 for any t and τ with t + τ ≤ TM . Figure 11
illustrates the idea. Let us consider the a-propagation (1.37) first (all statements
apply conversely for the b-propagation). For iteration time t we define a set of
states

Sa(t) = {s | at(s) 6= 0 ∧ (t < TM/2 ∨ bTM−t(s) 6= 0)} . (78)

Under the assumption that bτ (s)=0⇒ ∀τ ′≤τ :bτ ′(s) = 0 it follows

i ∈ Sa(t)⇐ at(s) 6= 0 ∧ bTM−t(s) 6= 0
⇐ ∃τ≤TM−t : at(s) 6= 0 ∧ bτ (s) 6= 0
⇐⇒ ∃τ≤TM−t : γtτ (s) 6= 0 (79)

25

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

p
ru

n
e
d

p
ru

n
e
d

TM

TM
2

0

state space

ti
m

e

P (R|a, s)

P (s0)

Sb(τ)

Sa(t)

Figure 11: Only the envelopes emanating from the start distribution (P (s)) and rewards
(P (R|a, s)) contribute to the propagation. They are chopped where they do not overlap with
the other envelope after TM/2 iterations.

Thus, every state that is potentially visited at time t (for which ∃τ :t+τ≤TM
: γtτ (s) 6=

0) is included in Sa(t). We will exclude all states s 6∈ Sa(t) from the a-propagation
procedure and not deliver their messages. The constraint t < TM/2 concerning the
b’s was inserted in the definition of Sa(t) only because of the feasibility of computing
Sa(t) at iteration time t. Initializing Sa(0) = {s |P (s) 6= 0}, we can compute Sa(t)
recursively via

Sa(t) =

{
Sa(t−1) ∪ OUT(Sa(t−1)) for t < TM/2[
Sa(t−1) ∪ OUT(Sa(t−1))

]
∩ {s | bTM−t(s) 6=0} for t ≥ TM/2

,

(80)

where OUT(Sa(t−1)) is the set of states which have non-zero probability transitions
from states in Sa(t−1). Analogously, the book keeping for states that participate
in the b-propagation is

Sb(0) ={s |P (R|a, s) 6=0} (81)

Sb(τ) =

{
Sb(τ−1) ∪ IN(Sb(τ−1)) for τ < TM/2[
Sb(τ−1) ∪ IN(Sb(τ−1))

]
∩ {s | aTM−τ (s) 6=0} for τ ≥ TM/2

.

(82)

For the discount prior, we can use a time cutoff TM for which we expect further
contributions to be insignificant. The choice of this cutoff involves a payoff between
computational cost and accuracy of the E-step. Let T0 be the minimum T for
which the finite-time likelihood P (R |T ;π) 6= 0. It is clear that the cutoff needs
to be greater than T0. In the experiment in section 1.3.3 we used an increasing
schedule for the cutoff time, TM = (1 + 0.2 k)T0, depending on the iteration k of
the EM-algorithm to ensure that with each iteration we become more accurate.

26

Bibliography

Atkeson, C. and Santamaŕıa, J. (1997). A comparison of direct and model-based
reinforcement learning. In Int. Conf. on Robotics and Automation.

Attias, H. (2003). Planning by probabilistic inference. In Bishop, C. M. and Frey,
B. J., editors, Proc. of the 9th Int. Workshop on Artificial Intelligence and Statis-
tics.

Beal, M. J., Ghahramani, Z., and Rasmussen, C. E. (2002). The infinite hidden
markov model. In Dietterich, T., Becker, S., and Ghahramani, Z., editors, Ad-
vances in Neural Information Processing Systems 14. MIT Press.

Boutilier, C., Dean, T., and Hanks, S. (1999). Decision theoretic planning: struc-
tural assumptions and computational leverage. Journal of Artificial Intelligence
Research, 11:1–94.

Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Exploiting structure in
policy construction. In Proc. of the 14th Int. Joint Conf. on Artificial Intelligence
(IJCAI 1995), pages 1104–1111.

Bui, H., Venkatesh, S., and West, G. (2002). Policy recognition in the abstract
hidden markov models. Journal of Artificial Intelligence Research, 17:451–499.

Chavira, M., Darwiche, A., and Jaeger, M. (2006). Compiling relational bayesian
networks for exact inference. Int. Journal of Approximate Reasoning, 42:4–20.

Cooper, G. (1988). A method for using belief networks as influence diagrams. In
Proc. of the Fourth Workshop on Uncertainty in Artificial Intelligence, pages
55–63.

Guestrin, C., Koller, D., Parr, R., and Venkataraman, S. (2003). Efficient solution
algorithms for factored MDPs. Journal of Artificial Intelligence Research (JAIR),
19:399–468.

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T., and Boutilier, C. (1998).
Hierarchical solution of Markov decision processes using macro-actions. In Proc.
of Uncertainty in Artificial Intelligence (UAI 1998), pages 220–229.

Hoffman, M., de Freitas, N., Doucet, A., and Peters, J. (2009a). An expectation
maximization algorithm for continuous markov decision processes with arbitrary
rewards. In Twelfth Int. Conf. on Artificial Intelligence and Statistics (AISTATS
2009).

27

28

Hoffman, M., Doucet, A., de Freitas, N., and Jasra, A. (2008). Bayesian pol-
icy learning with trans-dimensional MCMC. In Advances in Neural Information
Processing Systems 20 (NIPS 2007). MIT Press.

Hoffman, M., Kueck, H., Doucet, A., and de Freitas, N. (2009b). New inference
strategies for solving markov decision processes using reversible jump mcmc. In
Uncertainty in Artificial Intelligence (UAI 2009).

Kaelbling, L., Littman, M., and Moore, A. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101:99–134.

Kober, J. and Peters, J. (2009). Policy search for motor primitives in robotics. In
Koller, D., Schuurmans, D., and Bengio, Y., editors, Advances in Neural Infor-
mation Processing Systems 21. MIT Press, Cambridge, MA.

Koller, D. and Parr, R. (1999). Computing factored value functions for policies in
structured MDPs. In Proc. of the 16th Int. Joint Conf. on Artificial Intelligence
(IJCAI 1999), pages 1332–1339.

Kveton, B. and Hauskrecht, M. (2005). An MCMC approach to solving hybrid
factored MDPs. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), volume 19, pages 1346–1351.

Littman, M. L., Majercik, S. M., and Pitassi, T. (2001). Stochastic boolean satisfi-
ability. Journal of Automated Reasoning, 27(3):251–296.

McGovern, A. and Barto, A. G. (2001). Automatic discovery of subgoals in re-
inforcement learning using diverse density. In Proc. of the 18th Int. Conf. on
Machine Learning (ICML 2001), pages 361–368.

Meuleau, N., Peshkin, L., Kim, K.-E., and Kaelbling, L. P. (1999). Learning finite-
state controllers for partially observable environments. In Proc. of Fifteenth Conf.
on Uncertainity in Artificial Intelligence (UAI 1999), pages 427–436.

Minka, T. (2001). A family of algorithms for approximate bayesian inference. PhD
thesis, MIT.

Murphy, K. (2002). Dynamic bayesian networks: Representation, inference and
learning. PhD Thesis, UC Berkeley, Computer Science Division.

Ng, A. Y., Parr, R., and Koller, D. (1999). Policy search via density estimation. In
Advances in Neural Information Processing Systems, pages 1022–1028.

Pearl, J. (1988). Probabilistic Reasoning In Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann.

Peters, J. and Schaal, S. (2007). Reinforcement learning by reward-weighted regres-
sion for operational space control. In Proc. of the Int. Conf. on Machine Learning
(ICML 2007).

Poupart, P. and Boutilier, C. (2004). Bounded finite state controllers. In Advances in
Neural Information Processing Systems 16 (NIPS 2003), volume 16. MIT Press.

Raiko, T. and Tornio, M. (2005). Learning nonlinear state-space models for control.
In Proc. of Int. Joint Conf. on Neural Networks (IJCNN 2005).

29

Shachter, R. D. (1988). Probabilistic inference and influence diagrams. Operations
Research, 36:589–605.

Theocharous, G., Murphy, K., and Kaelbling, L. (2004). Representing hierarchical
POMDPs as DBNs for multi-scale robot localization. In Intl. Conf. on Robotics
and Automation (ICRA 2004).

Toussaint, M. (2009). Lecture notes: Influence diagrams. http://ml.cs.tu-
berlin.de/˜mtoussai/notes/.

Toussaint, M., Charlin, L., and Poupart, P. (2008). Hierarchical POMDP controller
optimization by likelihood maximization. In Uncertainty in Artificial Intelligence
(UAI 2008).

Toussaint, M., Harmeling, S., and Storkey, A. (2006). Probabilistic inference for
solving (PO)MDPs. Technical Report EDI-INF-RR-0934, University of Edin-
burgh, School of Informatics.

Toussaint, M. and Storkey, A. (2006). Probabilistic inference for solving discrete
and continuous state Markov Decision Processes. In Proc. of the 23nd Int. Conf.
on Machine Learning (ICML 2006), pages 945–952.

Verma, D. and Rao, R. P. N. (2006). Goal-based imitation as probabilistic inference
over graphical models. In Advances in Neural Information Processing Systems
(NIPS 2005).

Vlassis, N. and Toussaint, M. (2009). Model-free reinforcement learning as mixture
learning. In Proc. of the 26rd Int. Conf. on Machine Learning (ICML 2009).

Zettlemoyer, L., Pasula, H., and Kaelbling, L. P. (2005). Learning planning rules
in noisy stochastic worlds. In Proc. of the Twentieth National Conf. on Artificial
Intelligence (AAAI 05).

