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Abstract

Dynamic positional trees are a significant ex-
tension of dynamic trees, incorporating mov-
able nodes. This addition makes sequence
tracking viable within the model, but requires
a new formulation to incorporate the prior
over positions. The model is implemented us-
ing a structured variational procedure, and is
illustrated on synthetic raytraced images and
image sequences.

We consider the problem of structural image analy-
sis and in particular the inference of scene properties
from image data. We are especially concerned with im-
age decomposition, that is obtaining the characteristic
parts of an image and the relationships between them.
The components of an image are not independent of
each other; certain objects are expected to occur to-
gether, and objects are made up of different subcom-
ponents. One way of thinking of this problem is by
analogy with parsing a language; we are interested in
parsing images. However, the important characteris-
tics and structure in an image is significantly different
from linguistic data.

Those familiar with work on dynamic trees will be
aware that they have been developed in the context
of single static images [15, 1, 13]. It would be desirable
if the benefits of the dynamic tree approach could also
be made available for image sequences. Introducing a
sequence model into the basic dynamic tree formalism
is not straightforward as a change in the position of an
object is reflected in a change in the connectivity struc-
ture of the dynamic tree. This change would be hard
to predict from the previous time slice and would be
an inelegant representation of the dynamics: the con-
nectivity structure is supposed to represent the struc-
tural characteristics of an object, most of which will be
preserved during movement. Here the dynamic tree is
modified to incorporate position variables, resulting in
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a model where object movement can be represented in
terms of a change in position components of the nodes
representing that object.

The structure of the remainder of the paper is as fol-
lows. The first section of this paper develops some of
the issues surrounding image analysis in general and
then outlines the form of the dynamic positional tree,
and the rationale behind its design. This leads in to
a more formal definition of the dynamic tree model
in section 2, and we discuss related models in section
3. Defining a Bayesian model is one thing, being able
to implement it is another. In section 4, we take a
variational approach to the implementation problem
and give a set of structured variational approximations
which can be calculated efficiently, and which have the
structural information we need. The resulting set of
update equations are given in section 5. Illustrations
of the approach appear in section 7, after a brief dis-
cussion of the issue of sequences (section 6).

1 Dynamic Positional Trees

1.1 Pixel Models

When developing models for images, it is advisable to
separate the concept of an image model from that of
a pixel model. The former should develop a model of
the scene, and the latter gives the method by which
the scene is represented in terms of pixels. The latter
depends on the characteristics of the camera or mea-
surement process, the nature of the measurement noise
etc. The scene description should not depend on a
particular choice of pixellation. Having the measure-
ment process dealt with by a separate model from that
which deals with the structure of the scene ensures that
this is the case. The above approach will be followed
here. For now we will concentrate on the scene model,
and will make the assumption that there is some pixel
model which will relate the scene to the actual pixel
image which the observer is presented with. Details of
the pixel model are given in §1.6



1.2 Scene Structure

Dynamic positional trees are used to build representa-
tive tree structured belief networks for images. Like dy-
namic trees, dynamic positional tree structures are de-
signed to represent the inherent relationships between
and within objects in a scene. The following are some
of the features which would be appropriate for image
related structures:

e Locality: In general, child nodes will be spatially
closer to the parent rather than far from the parent.

e Spatial coherence: Two nearby parts of an image
are more likely to be related to one another than parts
separated by a larger distance.

e Multiscale representation: Objects further up the hi-
erarchy will have greater spatial extent than those fur-
ther down the hierarchy.

Spatial coherence is a key feature, and is illustrated by
figure 1. Like its predecessor [15] the dynamic posi-
tional tree can be seen as a mixture of tree structured
belief networks. Each tree structure represents one set
of relationships which might be useful in describing an
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Figure 1: Various trees. Left: highest prior probabil-
ity. Middle: high probability. Right: low probability.
Think of the leaf node positions as representing pixels.

1.3 Node Properties

Before looking at the structure model in detail, it is im-
portant to describe what each node of the belief net-
work represents. It is these nodes which denote the
characteristic variables needed to generate the image.
In this implementation they must represent the follow-
ing random variables:

o Class labels. These label the type of object or object
characteristic which the node is representing.

e Positions. Two dimensional real variables represent-
ing the position of the node in image space.

In addition variables/parameters representing spatial
extent would be useful, and for sequences, momenta
would also be necessary. These momenta would de-
scribe what movement would be expected between time
frames.

1.4 Structure and Position

The prior over possible network structures and the
prior over node positions must be defined together.
The belief networks with the highest prior probabili-
ties will have spatial coherence, but positions are spa-
tial variables, and so the positions cannot be ignored
when defining the structure. Likewise the prior on po-
sitions will depend on the network structure. Different
structures will produce different localisation require-
ments when it comes to defining the node positions.
We cannot escape the need for these concepts to be
dealt with together.

One way of defining a prior over structure and position
involves using a distribution similar to that introduced
in [14] as a hierarchical Gaussian mixture model.

Suppose we have a network with a given number of lay-
ers, and that the number of nodes in each layer is fixed.
In the hierarchical Gaussian mixture model each node
is allowed to choose its parent uniformly from the nodes
in the layer above. This defines a tree structure. Given
this tree structure, the probability of the position r; of
each node i is given by a Gaussian distribution centred
at the position of the parent node (see figure 2). The
result of this model is far from uniform or regular at the
leaf nodes. In fact this approach was developed specifi-
cally to cater for clustering of the leaf node values. This
is a problem for images as it means the model would
not describe large parts of the image space, whereas we
expect every part of an image to relate to some object.
However, the standard hierarchical Gaussian mixture
model can be modified to give a distribution with the
required structure. The approach used here is to con-
dition the hierarchical Gaussian mixture model on the
fact that the leaf nodes are on a regular grid.
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Figure 2: The first few layers of the hierarchical Gaus-
sian mixture. The top picture give the parent/child
structure, and the bottom picture gives the node cen-
tres and variances.



1.5 Class Label Model

The main remaining component of the scene model in-
volves the relationship between the class labels of the
nodes. A sample from the structure-position model
defines a tree structured belief network. Hence con-
ditioned on the structure-position, each node has a
known parent. This parent-child relationship repre-
sents the component-subcomponent relationship be-
tween objects in an image. Hence we need some condi-
tional probability which says how likely the child node
is to have a certain label given that the parent has a
particular label. The only constraint we make here is
that this conditional probability is always the same for
this child/parent pair whatever the state of the other
connections.

1.6 Pixel Model

We can now return to the pixel model, and relate the
leaf nodes of the dynamic positional tree with the pixel
RGB values. The simplest form of pixel model gener-
ates the pixels from the state of the leaf nodes whose
position lies within the pixel area. Then what is needed
is a model of pixel colour intensity conditioned on node
class label. The resulting colour intensities can be av-
eraged over the leaf nodes within a pixel area to give
the intensity for that pixel. The simplest case is where
we arrange for there to be one leaf node per pixel.
Sometimes more textural information can be utilised
if multi-pixel regions are used instead of pixels.

There are many ways that the class conditional model
of pixel colour intensity can be obtained. We have ex-
amined a number of approaches including modelling
scaled likelihoods for multi-pixel regions using neural
network methods [16], and simple approaches, such as
using empirical (histogram) class conditional distribu-
tions.

2 Theory

In this section we define the dynamic positional tree
model explicitly. We denote the set of network nodes
by N = {1,2,...,n}. The nodes are organised into
layers, and the bottom layer of nodes are the leaf nodes,
denoted by L. The remainder are denoted by L'.

We denote the position value of node i by the random
variable R; which takes vector values r;, one compo-
nent for each dimension of the system (2 for an image).
We denote the class state of the node ¢ by random vari-
able X; which takes vector values x;, one component
for each of C' possible object labels. The indicator z¥ is
zero for all k except if node i is of class k, when z¥ = 1.
We generally use the superscript notation to represent
a set of random variables. For example X P represents
the set {X;|i € B}, and R represents {R;|i € B}. For

the state of all nodes we drop the N: XV = X.

The tree connectivity is given by Z = {Z;;|i,j € N},
where Z;; is a random variable which takes indicator
values z;; = 1 if node j is the parent of node 4, and
z;; = 0 otherwise. We can allow node ¢ to disconnect
from all parents; this disconnection state is denoted by
zio = 1; 2z;; = 0Vj # 0. Finally, the set of pixels
(which will be our data) is denoted by Y.

2.1 The Node Position Model

In section 1.4 it was argued that the distribution
P(X, R) of node position and connectivity need to be
defined together. We do that using a conditional hier-
archical Gaussian mixture model.

2.1.1 Hierarchical Gaussian Mixture Models

We define the distributions over structure, P(Z), and
position, P(R|Z), as follows. First the distribution
over trees P(Z) is given by P(Z) = [1,; v;;’ where v;
is a prior probability of ¢ connecting to j. This simply
says that each node in can choose its parent from one
of the nodes in the layer above. Usually the probability
7vi; is taken to be uniform over all parents j, with an
additional low probability of the node choosing to be
a root.

The other term P(R|Z) is given by P(R|Z) =
H@j\%;‘:l P(ri|rj) with

Pleifey) = g exp (=5 =1 = ) S5 0 -y =)
(1)
and where the normalisation constant ( =
(2m)|%;|'/2. Here X;; is a given covariance matrix,
and 7;; is an offset, usually set to zero. Note that z;;
is non-zero for only one value of j, which must be in
the layer above that containing node i. More infor-
mally P(R|Z) is formed by generating the positions of
the next layer from a Gaussian centred at the position
of the parent.

The position of a root node i is chosen independently
from a Gaussian mean r;y and variance o;9. We gen-
erally take r;g = rqg to be zero, and o;9 to be large. In
other words root positions are chosen from a relatively
broad Gaussian.

This hierarchical Gaussian mixture model has many
of the components which we want. It has compo-
nent/subcomponent structure, spatial coherence and
hierarchical form. It remains to ensure that every part
of the image is properly described by some component
of the model. To enforce this, the leaf nodes R are
taken to be fixed in a suitable grid. The distribution
of the remaining variables, P(Z, R”'|RT), is given by
the conditional distribution

P(Z,R"|R") = P(Z|R")P(R" |Z,R"). (2



This gives the final prior in equation (2).
2.2 Node Labels and Pixel Model

The hierarchical Gaussian mixture model of the pre-
vious section needs to be combined with some distri-
bution over X to get the full dynamic positional tree
prior.

Including these positions, and a pixel model, the overall
prior model (again given fixed RL) can be written as

P(Z,X,R" Y|R") = P(Z,R” |R*)P(X|Z)P(Y|X,R).

3)

P(Y|X, R) is the pixel model and determines how the

object structure is represented in terms of pixels Y.

The original dynamic tree model appears here through

the distribution of the node states P(X|Z) which is to

be o

P(X|2) = [[(PE)=5
.

where Pi’}l is the probability that node ¢ is in state k

given that j is the parent of i and node j is in state [.

Note again the power of z;; only picks out one of the j

elements (the parent) for each i in the product.

Finally we want to choose some form for the pixel
model. The simplest form assumes a one to one re-
lationship between pixels Y; and leaf nodes X; i € L,
and takes P(Y|X,R) = P(Y|X%) = [],c, P(Vi] X)),
meaning that the pixel representation comes directly
from the lowest level object representation.

In generative terms we choose a structure Z and
positions RY' according to the model P(Z, R¥'|RL).
Then the object class labels are generated according
to P(X|Z). Finally the pixel values are obtained from
P(Y|X, R). This gives the full prior model of the im-
age in terms of a position encoding dynamic tree. This
prior model is a rather complicated mixture of trees,
and so we would not expect to be able to calculate the
posterior exactly. In section 4 we develop a structured
variational approach.

3 Related Work

The general aim of our work is to provide a prior distri-
bution which is spatially coherent, giving rise to object-
like groupings of pixels. There are a number of other
approaches to this problem; two of the best known are
tree-structured belief networks (TSBNs) and Markov
random fields (MRFs). Below we discuss these meth-
ods, and their relative strengths and weaknesses.

In tree-structured belief networks, the leaves will be
taken as pixels; the higher levels of the tree in-
duce correlations between the leaf nodes. TSBNs us-
ing discrete-valued nodes [4, 10] and Gaussian nodes
[2, 11] have been investigated. These architectures are
tree-structured analogues of the linear hidden Markov

model and Kalman filter respectively. TSBNs have
the advantage that inference calculations can be car-
ried out efficiently (using upward-downward algorithms
analogous to forward-backward algorithms on chains).
However, they have a rigid architecture (often of quad-
tree type) that is unresponsive to the image content.
This can give rise to "blocky” artefacts in image gen-
eration/analysis. We also note that DeBonet and Vi-
ola [6] have used an interesting tree-structured network
for image synthesis using non-Gaussian densities. In
this work the higher levels correspond to wavelet coeffi-
cients and are observable rather than hidden variables.

Markov random field models [3, 8] are undirected
graphical models that define a stationary process
(thereby overcoming problems of blockiness). They
have two disadvantages (i) they are non-hierarchical
and (ii) inference in such a MRF is NP-hard in gen-
eral.

The Dynamic Tree (DT) architecture seeks to gain the
advantages of the hierarchical structure of the TSBN
whilst overcoming the disadvantage of its rigid struc-
ture. It does this by defining a prior distribution over
trees; conditional on the tree structure (denoted by
Z), the network is a TSBN. Typically there are a very
large number of possible trees in the prior; in response
to data the posterior distribution will be re-weighted to
favour those architectures most consistent with the im-
age data. Dynamic tree architectures were introduced
in [15] and in [9].

One attractive feature of the DT is that disconnec-
tions can occur, giving rise to a ‘forest’ of more than
one tree. The roots can be interpreted as identifying
individual objects; an object is defined by all of those
nodes which are children of a root. Notice that this
interpretation is not possible in a single TSBN. In [8]
an edge process was introduced to the MRF allowing
explicit disconnections. However, in contrast to the
dynamic tree architecture the prior over the edge pro-
cess can produce contours which do not correspond to
region boundaries.

The rich variety of trees generated in the DT archi-
tecture is reminiscent of the parse trees in context free
grammars (CFGs), although the DT models are con-
strained to have a fixed number of layers. There is a
O(n?) algorithm for evaluating the MAP parse etc in
CFGs; however, this algorithm depends crucially on a
one-dimensional ordering of inputs and thus cannot be
applied to 2-d analyses.

The construction of a number of belief networks de-
pendent on a variable Z has been used in the work of
Geiger and Heckerman on multinets [7]. In that work
multinets were used as a way of speeding inference, as
conditional on Z the networks will typically be much



simpler than an equivalent network which ignores this
conditioning. In our work, integrating out Z leads to a
network which is layerwise fully connected. Such fully-
connected models have been used before e.g. the sig-
moidal belief network model used in the Helmoltz ma-
chine [5], but we believe that the ‘clean’ semantics of
the DT model (where we expect that each pixel should
belong to one object) should aid the interpretability
and utility of the model.

4 Variational Approach

Exact inference using propagation methods is not fea-
sible in this network, and so a variational approach is
used. This develops and extends the approach used in
[13] to the new case of the positional dynamic tree.
This approach involves approximating the posterior
distribution with a factorising distribution of the form
Q(2)Q(X|Z)Q(R""), where Q(Z) is the approximat-
ing distribution over the Z variables, Q(X|Z) is the ap-
proximating distribution over the states, and Q(RLI) is
an approximating distribution over the non-leaf node
positions.

To choose good forms for the Q’s the Kullback-Liebler
divergence between the Q(Z)Q(X|Z)Q(R|Z) distri-
bution and the true posterior should be minimised. In
fact the approximate distributions which are used take
the form of a dynamic tree model, and give propagation
rules which are efficient and local. Similar approxima-
tions used for the basic dynamic tree can be seen in
[13].

The KL divergence between the approximation and the
true posterior is of the form

RS CIALALTS

Q2)QX|2)Q(R")
o8 (P(z, RYY, RE)P(X|Z.Y, RL)) W

We now need to discuss the forms of each of the ap-
proximating distributions. We use a Q(Z) of the form

~Ie

with parameters a. Q(RY") takes the form Q(RF') =

I JW s (=507 W07 - )

where p; and ; are position and covariance param-
eters respectively. In this paper (2; is assumed to be
diagonal. Lastly the Q(X|Z) is a dynamic tree approx-
imation of a form identical to that used in [13]:

(@t

ijkl

Q(X|2) =

Again Q}} are parameters to be optimised.

5 Update Equations

We want to minimize the KL divergence (4), with the
forms of approximate distribution given in the last sec-
tion. We need to do this subject to contstraint that
>, @ =1 (probabilities sum to 1). We add to (4) a
set of Lagrange multiplier terms corresponding to these
constraints, and set the derivatives to zero. Solving this
gives the following set of update equations.

5.1 Class Labels

Minimizing the KL divergence gives us a set of update
equations. Given all the a’s, let m¥ be given recursively
from the top down by

— Ok
m; = E @i Qizm
jt

Then mY is the marginal probability of node i being in
class k under the variational distribution. Again given
the a’s we find that minimization of the K L divergence
gives
sz )\k ei
kl _ k

= where \; = H
ij Pk’l A i

Z cec(i)
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In the last equation ¢(i) is used to denote the possible
children of i, in other words the nodes in the layer
below that containing node i.

Hence given « all the () can be updated by making a
single pass up the tree to calculate the A values, and
then calculating the Q). In fact calculating the @) values
themselves can be avoided completely as the marginal
m values can be obtained directly from the A\ and the
prior P values.

5.2 Positions

The update equations for the positions (again given the
a’s) take the following forms

> (i) 7"

J

M = + aij(Zi;) " wy,

1
(Qi)pp = - —
" > (i (Zij)ew + i(Zji)ew )
where we have assumed that both ¥ and Q are diag-
onal. The equations for u need to be iterated until
suitably converged.

5.3 Connectivity

Lastly the connectivity needs to be considered. For
fixed parameters in Q(X|Z) and Q(R) of the forms
given above, we obtain

@ij o vij exp(Ei;) exp(Pij)



where
E-;J‘ = Z m; [log Z P,l;l)\f] and
1 k
1 Tw-1
oy = E(Hl —n; = pij) X5 (i — 1y — pij)

1 _ 1 _
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In the above the constant of proportionality is found
by normalisation.

5.4 Optimization Process

The above equations give all the necessary update
rules. The whole optimization process involves an
outer loop optimizing the Q(Z) values and an inner
loop containing up and down passes of the Q(X|Z)
optimzation and a number of passes of the Q(R) opti-
mization. The KL divergence can be calculated up to
an additive constant, and so can be used as an explicit
objective function and be monitored accordingly.

There are a few hidden problems in the optimzation.
Most of the updates are inexpensive. However there is
the issue of summing over all possible children/parents.
Most of these will give negligible contributions to the
relevant sums because their contribution contains a
probabilistic factor from the tail of a Gaussian. Hence
grid based methods are used to index positions and
thereby reduce the number of references to z;; compo-
nents which are irrelevant. This keeps computations
down to something near the order of the number of
nodes.

Learning This variational method gives a lower
bound to the log likelihood. The lower bound can be
used in the way described in [12] to optimise the pa-
rameters of the actual distributions using a form of
EM algorithm. This approach was used here for learn-
ing the conditional probabilities Pilz.l. It was assumed
that these conditional probabilities were the same for
all nodes in the same layer.

6 Sequence Model

Given the dynamic positional tree formalism, we are
able to develop a model of sequences. We consider a
Markovian model, where the dynamic positional tree
posterior at the previous time step influences the prior
at the next step. There is not space to give full details
of the model here. However, the form chosen sets all
of the approximating distributions at time ¢t 4+ 1 to be
similar posterior at time ¢, but at the same time allow-
ing for some change in the structure, some movement
of the position values, or some change in the class la-
bel. This form also allows the information from the
approximate distribution to then be filtered through
the Markovian dynamics, and obtain a model of the

similar form to the prior of the single image model.
Hence this process can be repeated for as many images
as there are in the sequence.
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Figure 3: A test example. (a) The image, and (b) the
ground truth labelling. (c) The pixelwise labelling and
(d) the positional dynamic tree labelling. (e) A slice
projection of the highest posterior dynamic tree (from
down the middle of the image) and (f) the positions
and labels of the sixth layer of the tree. (g) gives the
next image in the sequence, while (h) gives shows where
the nodes in the sixth layer move to.

7 Illustrations

The dynamic positional tree model was tested on arti-
ficial ray traced images. There were 6 training images,
each with a ground truth label set of 5 class labels, one
for each of sky, cloud, helicopter, sea, sun. The im-
ages were 160 by 120 pixels and were used to learn the
conditional probabilities (CPTs) P(X;|X;). The CPTs
were assumed to be the same for all nodes in a given
layer. The training images were also used to build a
simple empirical pixel model: the RG B colourcube was



partitioned into 64 subcubes, and the histogram of the
pixel values was used as the class conditional proba-
bilities for each label class. The standard deviations
of the Gaussian distributions in the Gaussian affinity
model were set by hand to be of a suitable width: one
which generally gave a few (10 to 20) possible choices
of parent for a node.

One image can be seen in figure 3a along with the
ground truth segmentation (3b). Below that, the pix-
elwise segmentation without the use of the dynamic
positional tree can be seen in figure 3c. The picture
in 3d gives the maximum posterior segmentation ob-
tained using the variational approach on the dynamic
positional tree. This picture only gives a crude pic-
ture of the overall posterior distribution. Note the dif-
ference in form between the solid objects and more
etherial ones such as clouds. Figure 3e gives a projec-
tion of a slice of the maximum posterior tree structure
obtained (we actually have a distribution over trees),
while figure 3f gives a picture of the positions and la-
bels of nodes in the sixth layer from the root (out of
nine) of the posterior dynamic positional tree. Given
a second image (figure 3g) in sequence with the first,
we can see what happens to the node positions after
passing through the sequence model in figure 3h.

8 Discussion

The dynamic positional tree model enables the possi-
bility of using dynamic tree like structures for image
sequences. However it also has the benefit that the
structures obtained can be interpreted in terms of ob-
jects, where the position labels relate to the position of
the object and each of the parts of the object. Dynamic
positional trees go beyond simple segmentation meth-
ods, and move towards structural scene decomposition.
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