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Abstract

A new local and incremental learning rule is examined for its ability
to store patterns from a time series in an attractor neural network. This
learning rule has a higher capacity than the Hebb rule, and suffers signif-

icantly less capacity loss as the correlation between patterns increases.

1 Introduction

There are two rules regularly used for training Hopfield networks. The most
common of these, the Hebb rule, suffers severe degradation when training pat-
terns are correlated. As a result, practitioners have generally reverted to us-

ing the pseudo-inverse rule in such circumstances. However the pseudo-inverse



method suffers from significant problems. Firstly, it 1s not incremental: if a new
pattern is to be trained, all the old patterns have to be retrained. Secondly it
is not local: the network cannot naturally be trained in a parallel manner, and
so 18 not easily amenable to high speed parallel techniques. Lastly the training
method is slow because it involves inverting an m x m matrix, where m is the
number of patterns to be stored.

These problems are most significant when the patterns to be trained are a
time series and real time training is needed. The slow speed of the pseudo-
inverse, and more importantly its inability to add patterns incrementally, make
it of little use for this task. Furthermore time series usually include significant
correlations between readings from adjacent time steps. This makes the Hebb
rule unsuitable.

Here, we examine the new learning rule introduced in [1] for its effectiveness
with time correlated patterns. This learning rule does not suffer from the dis-
advantages of the pseudo-inverse: it is both local and incremental. Tt also has
a higher capacity than the Hebb rule. We demonstrate that this new learning
rule maintains its high capacity with significant correlations in patterns. This
contrasts with the Hebb rule, where the capacity reduces much faster as the cor-
relation increases. We show how this can be accounted for by the relationship
between the new rule and the pseudo-inverse.

In this paper we look at a model of pattern correlations, which resemble
the correlations in patterns which form a time series. Many time series are
digitisations of continuous events, digitised both in the time and space domains.
For example video footage consists of frames of digitised video information. Any

two frames of such time series are inevitably correlated, the level of correlation



depending on the speed of movement, the sampling rate, and how close in time

the two frames are to one another.

2 The Hopfield network

The Hopfield network is an attractor neural network which acts as a content
addressable memory. The job of the learning rule of a Hopfield network is to
find some weight matrix w;; which stores the required patterns as fixed points
of the network.

Locality and incrementality have already been discussed in the introduction.
These are both important characteristics of a learning rule. In addition to these
a learning rule has a capacity. This is some measure of how many patterns can
be stored in a network of a given size. More specifically, in this paper we consider
the absolute capacity [2] of the network. This is given by the asymptotic ratio
of the number of patterns that can be stored without error to the number of

neurons, as the network size tends to infinity.

2.1 Different learning rules

Three learning rules are used in this paper. The Hebbian learning rule 1s local
and incremental, but has a low absolute capacity of n/(2Inn) where n is the
number of neurons [2]. This capacity decreases significantly if patterns are
correlated.

The pseudo inverse has a capacity of n [3], but does not have the functionality
of the Hebb rule. It is not incremental or local, because 1t involves the calculation

of an inverse.



2.1.1 The new learning rule

In order to overcome the problems of both of these learning methods we intro-

duce the following new learning rule.

Definition 1 (The new learning rule) The weight matriz w;; of an attrac-

tor neural network is said to follow the new learning rule if it obeys
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where hfy =57 ki j wfk_lé’,‘j is a form of local field at neuron i (the input to

the neuron i) , and & is the new pattern to be learnt (€' = £1)

This rule is local: w;; depends only on information available at the two adjacent
neurons (the values of &, &;, by, h;). It is clear from the recursive nature of (1)

that it is also incremental. It has an absolute capacity of n/v/2Inn [1].

3 Capacity

The measures of absolute capacity given above only hold for independent pat-
terns. Here we consider what happens when patterns are correlated. We are
specifically interested in the types of correlations which occur in time series. To

model this we form the patterns using the following simple Markov chain.

<p<l1 (2)
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P(gzu :gﬁ_l) = p; P(fll =1)= %;

where ¢ = 1,2,...,m labels the position of the pattern in the time series and
&M= +1 Vi p.

The correlation between patterns £ and 5;““ 1s seen to be
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by application of the Chapman-Kolmogorov equations. This shows that the
correlation between patterns decays as their time seperation increases. Hence-
forth when we use the term correlation, we refer to the value of the correlation
between two consecutive patterns: 2p — 1.

Here we compare the absolute capacity of the new learning rule with the
Hebb rule as the correlation increases. In all cases 30 sets of patterns £ of length
500 were chosen according to (2). For each set, the patterns were presented to
the network one by one until one of the patterns was no longer an attractor
(i.e. absolute capacity had been reached). We plot the minimum mean and
maximum capacity over the 30 sets.

The above simulations were performed, and the capacity results for the new
learning rule were compared with those of the Hebb rule (Figure 1). Tt is clear
from this graph that not only does the new rule have a significantly higher
capacity for uncorrelated patterns, but it also suffers less from an increase in
the correlation. The new rule seems to be unaffected by small correlations,
whereas the Hebb rule capacity decays fast as the correlation increases from
zero. In addition the new rule still has greater storage ability at correlations of
about 0.5 than the Hebb rule does for uncorrelated patterns. The Hebb rule on
the other hand is useless for correlations above that of 0.4. Results were very

similar for other network sizes.

4 The relationship between the learning rules

The following relationship between the different training rules can begin to

indicate why the new learning rule can store correlated patterns.



The inverse of a matrix can be calculated by the following iterative procedure
Xt = X" (2] — CX™)

with X% = I. The X" converges to C~1 if (I — (') has eigenvalues less than
one. This is true for any C' of the form used in the pseudo- inverse rule.
So using this with the pseudo-inverse where C' = 1/n ZZ:1 &, &Y, we can get

a first approximation by iterating once only, to get a first order in C' expansion:
2 — 1 o=
wif = DY &g - D oy
p=1 p=1v=1

The new rule is defined recursively If this is then expanded out we find it is
also of the above form to first order in C'.

The Hebbian rule is clearly the zeroth order expansion of the pseudo-inverse
rule. The first order expansion itself is non-incremental, but the new learning
rule provides an incremental method with a first order expansion equivalent to
that of the pseudo inverse.

We can consider the new learning rule to be an intermediate between the

Hebb rule and the pseudo-inverse. It inherits some of the ability of the pseudo-

inverse to deal with correlated patterns.

5 Conclusions

It is little real life benefit to be able to store independent patterns in an associa-
tive network. All meaningful patterns tend to have some form of correlations.
Here we have looked at a simple case, and have seen how the Hebb rule dete-
riorates rapidly with these types of time correlations. The new learning rule

still has all the important functionality of the Hebb rule, but has both higher



capacity and greater resilience to correlations. It appears that the new learning
rule is the only one of the three rules considered which is suitable for real time

storage of patterns that form a time series.
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Figure 1: Capacity of new learning rule v Hebb (min-mean-max graph)



