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Abstract
Recently, prediction markets have shown
considerable promise for developing flexible
mechanisms for machine learning. In this pa-
per, agents with isoelastic utilities are con-
sidered. It is shown that the costs asso-
ciated with homogeneous markets of agents
with isoelastic utilities produce equilibrium
prices corresponding to alpha-mixtures, with
a particular form of mixing component relat-
ing to each agent’s wealth. We also demon-
strate that wealth accumulation for logarith-
mic and other isoelastic agents (through pay-
offs on prediction of training targets) can im-
plement both Bayesian model updates and
mixture weight updates by imposing different
market payoff structures. An iterative algo-
rithm is given for market equilibrium compu-
tation. We demonstrate that inhomogeneous
markets of agents with isoelastic utilities out-
perform state of the art aggregate classifiers
such as random forests, as well as single clas-
sifiers (neural networks, decision trees) on a
number of machine learning benchmarks, and
show that isoelastic combination methods are
generally better than their logarithmic coun-
terparts.

1. Introduction

This paper addresses the problem of classifier aggre-
gation through the use of Machine Learning Markets.
In supervised machine learning, many algorithms use
simple averaging, weighted averaging, mixtures, mix-
ing and log opinion pools for combining a variety of
classifiers to form aggregate classifiers. On the other
hand, prediction markets have been used for aggrega-
tion of simple beliefs in other fields (the market price is
used as an aggregate probability). Some simple forms
of theoretical prediction markets have been shown to
be equivalent to weighted averaging (Barbu & Lay,
2011; Storkey, 2011). However, more generally, we
can formulate prediction market mechanisms on the
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basis of expected utility theory. We show that a whole
spectrum of aggregation methods are then available,
including and extending those provided by α-mixtures.
We demonstrate the empirical benefits of these aggre-
gation methods over those discussed above.
A number of authors have recently examined the pos-
sibilities of market mechanisms for implementing ma-
chine learning methods. Desirable properties of mar-
kets include the fact that agents act independently,
markets are inherently parallelisable and the fact that
the form of models produced by markets is more
general than explicitly defined probabilistic models.
Market based machine learning approaches are be-
ing shown to be consistent with standard probabilis-
tic machine learning formalisms (Storkey, 2011) as
well providing regret bounds for market makers (Chen
& Wortman Vaughan, 2010; Abernethy et al., 2011).
Markets are also a well studied and pervasive part of
our social and computational infrastructure.
We envisage the possibility of setting up online pre-
diction markets for large scale multivariate prediction
problems in which different algorithms compete. This
generalises prediction markets, which usually focus on
disconnected discrete events, and relates to other re-
cent work in utilising algorithm crowdsourcing for ma-
chine learning (Abernethy & Frongillo, 2011). It would
provide an alternative to, say, the current interest in
competition and challenge environments (e.g. Netflix,
Kaggle, PASCAL2), where individuals compete for the
best personal performance. Experience in these do-
mains has suggested that it is common for individual
algorithms to be outperformed by competitors group-
ing together to produce model combinations (Bell &
Koren, 2007). This mirrors the experience regarding
aggregation of expert predictions (Dani et al., 2006).
The main novel contributions of this paper are:

• Extending the set of standard agents from loga-
rithmic agents and exponential agents to also in-
clude the various forms of isoelastic agents, and
to show such agents can reproduce and extend the
α-mixtures framework (Amari, 2007).

• Demonstrating that online and batch agent
wealth updates are equivalent to Bayesian pos-
terior updates and mixture coefficient updates re-
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spectively.
• Equating the multi-agent equilibrium (fixed-

point) market with a divergence minimisation.
The result is an iterative process for establishing
the market equilibrium values.

• Demonstrating that Machine Learning Markets
outperform individual strong classifiers when pre-
sented with equivalent data. Showing that the
markets improve on state of the art classifiers,
such as random forests, and provide better log-
probability performance on classification test sets.

• Demonstrating that inhomogeneous sets of isoe-
lastic agents produce better performance than
logarithmic agents. Hence aggregation by simple
mixtures can be improved upon.

2. Other Related Work

A number of previous papers address machine learn-
ing and prediction markets. In (Lay & Barbu, 2010)
and (Barbu & Lay, 2011), the authors consider agents
endowed with betting functions, and do experimental
tests in the context of classifiers (leaves of the trees of
a random forest) trained on bootstrapped samples. In
(Storkey, 2011) the author develops a complementary
approach, utilizing beliefs and utilities of individual
agents. He shows that a variety of machine learning
model combination methods, including model averag-
ing, product models, factor graphs etc. can be imple-
mented using Machine Learning Markets. In (Chen &
Wortman Vaughan, 2010) the market is defined with
respect to a global cost function, and they demon-
strate achieving ‘no regret’ learning using information
markets. From another perspective, Agrawal et al.
(Agrawal et al., 2010) looked at the equilibrium con-
ditions of prediction markets in various situations of
matching buyers and sellers. The available informa-
tion is important for market conditions. This was dis-
cussed in (Jumadinova & Dasgupta, 2011), where they
used a multi-agent system to examine the various de-
pendencies on information reliability, rate etc. It is
the ability of prediction markets to aggregate belief
that is key to their potential (Pennock & Wellman,
1997; Ottaviani & Sørensen, 2007), and much of the
experimental work on prediction markets backs that
up (Ledyard & Hanson, 2008).
The potential of prediction markets has been consid-
ered for some time. In (Arrow et al., 2008; Manski,
2006; Wolfers & Zitzewitz, 2004) the authors discuss
the capability of practical prediction markets to cap-
ture accurate probabilities. In (Dani et al., 2006) the
authors compared a number of different mechanisms
for expert aggregation including a simple prediction
market approach. Different market designs have dif-
ferent features, and ensuring good prediction market
design with sufficient fluidity (Brahma et al., 2010)

will be critical for efficiently reaching equilibrium. In
(Tseng et al., 2010) the authors examine the statistical
properties of market agent models, whereas in (Lee &
Moretti, 2009) the authors consider prediction markets
in the context of Bayesian learning.

3. Notation

Machine Learning Markets use prediction market
mechanisms to generate machine learning models via
the market price. The basic concepts and notation are
now introduced.

3.1. Goods

We consider a set of market goods enumerated by k =
1, 2, . . . NG, each corresponding to a specific outcome
of a discrete random variable, denoted k. The good k
will pay out one unit of currency in the event that the
outcome for k is k. The market has a commonly agreed
cost ck (0 < ck < 1) for each good k and we collect
the costs into the cost vector c = (c1, c2, . . . , cNG)T .
The cost vector c will be interpreted as the aggregate
probabilistic belief provided by the market: the prob-
ability1 of k occurring is ck.

3.2. Agent Actions

A number of agents, enumerated by i = 1, 2, . . . , NA,
act in the market. Each agent has wealth Wi, and in-
vests (or risks) an amount rik in stock k. We collect
ri = (ri1, ri2, . . . , riNG)T . A no arbitrage assumption2

implies that
∑
k ck = 1, meaning a probabilistic inter-

pretation of ck is reasonable. Likewise, we can require
all agents to spend all their wealth: if any agent wants
to keep it as a risk free investment, that agent can sim-
ply purchase one of each stock instead. Hence, without
loss of generality, we have∑

k

rik = Wi. (1)

Again without loss of generality, we will measure
wealth in units such that the total wealth across all
agents is 1:

∑
iWi = 1. Hence

∑
ik rik = 1.

Each agent is also endowed with a utility function
Ui(W ) denoting the utility of having wealth W . For
the purposes of this paper we will only consider con-
cave utility functions. Finally, each agent has a belief
Pi, where Pi(k) denotes the probabilistic belief, for
that particular agent i, that the outcome of k will be
k. Necessarily, as k enumerates all possible outcomes,∑
k Pi(k) = 1 for all agents.

1Strictly, the probability is ck divided by the unit of
payout. This ensures dimensional consistency, both here
and elsewhere.

2No arbitrage: there is no opportunity for a risk free
gain. If

∑
k ck 6= 1 an agent can make a risk free win

by buying (or selling) one of each stock which has a sure
return (or debt) of 1 unit.
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3.3. Market

The agents jointly act in a market. The market trans-
actions are subject to the macroscopic constraint

NA∑
i=1

rik
ck

=
NA∑
i=1

Wi = 1⇒
NA∑
i=1

rik = ck (2)

where NA is the number of agents. This states that
wealth must be conserved in the market: the total pay-
out were that item to occur matches the total original
wealth. Here rik/ck is the amount of good k bought
by agent i (the amount invested divided by cost) and
so is the amount received if event k occurs.

3.4. Summary Table

i → agent k → good/outcome
NA, NG → #agents/goods ri → investment

Wi → Wealth Ui → Utility
c → cost vector Pi(k) → agent belief

4. Utility Maximisation

In Machine Learning Markets the market price c de-
fines a probability distribution over possible outcomes,
which can be used for prediction. The multiclass pre-
diction problem is the focus for this paper.

4.1. Investment Functions

A given utility function Ui induces a given investment
function r∗i (Wi, c) via expected utility maximisation:

r∗i = r∗i (Wi, c) = arg max
ri

∑
k

Pi(k)Ui

(
rik
ck

)
s.t.

∑
k

rik = Wi. (3)

where we have used the fact that every agent must
spend their whole wealth (1). The investment function
indicates the amount an agent ideally would wish to
invest in each good, given the costs c. The market
constraints may mean this desire cannot be satisfied:
the agent must find a buyer or seller to realise this
desire. The optimum of (3) is given by

r∗ik = ck(U ′i)
−1

(
λi(c)

ck
Pi(k)

)
(4)

where U ′ is the derivative of U and λi(c) is a Lagrange
multiplier such that

∑
k r
∗
ik = Wi is satisfied.

In general, the equation for λi cannot be explicitly
solved. However, for a number of utilities the invest-
ment function is analytic. Table 1 lists some important
utility functions (exponential, logarithmic and isoelas-
tic) and their corresponding investment functions.
The class of isoelastic functions are a very useful set of
utilities. The isoelastic utilities get their name as they
all have investment functions that are linear in the
current wealth; this property is called the isoelastic
property. Isoelastic utility functions are parameterised
by η > 0. Strictly, the logarithmic utility is also an

isoelastic utility with the limiting value of η = 1.

4.2. Market Equilibrium

The Market must satisfy the market constraint (2).
At the same time each agent attempts to maximise
their individual utility. It is well known (Arrow &
Debreu, 1954) that, if the individual utilities are con-
cave, there exists a fixed price point for which agents
all attain their maximum utility and the market con-
straints are satisfied (which is unique for the markets
considered here). This is called the market equilib-
rium. However, the existence of a fixed point does
not establish a means of obtaining it. The question
of how a market might equilibrate formed part of the
early discussion regarding equilibria, and led to Wal-
ras’ concept of tâtonnement. This idea, as communi-
cated by Samuelson (Samuelson, 1947), was that prices
are differentially changed in the direction of the excess
or deficit demand. However, the constraints on this
formalism meant it was not established as a general
purpose procedure. The are many analyses that in-
volve formulating convex optimisation approaches or
auction processes for obtaining market equilibria, e.g.
(Deng et al., 2002; Devanur et al., 2008; Ye, 2006) –
see (Vazirani, 2007) for more details. These algorithms
typically require a complete optimisation procedure.
Two exceptions are (Cole & Fleischer, 2007; Fleischer
et al., 2008) which develop on the idea of tâtonnement.
In this paper an iterative tâtonnement-like approach
is used for establishing market equilibria. Consider
the fact that

∑
k ck = 1 and

∑
k(
∑
i rik) = 1 means

that both ck and
∑
i rik take probabilistic form. At

equilibrium, we have
∑
i rik = ck (see (2)) when all

agents are allocated their optimal demand. Away from
equilibrium there will be an excess or deficit demand
in different goods, which is evident in the difference
between

∑
i rik and ck. Consider the KL divergence

KL(c||
∑
i ri). This is minimised and zero only at

equilibrium. To minimise this KL divergence we use
Algorithm 1. This algorithm only terminates when the
(unique) equilibrium is reached, when c is the equilib-
rium price. In all our empirical tests the equilibrium
was always reached. Each pass of the algorithm is
naively O(NA×NG) – each update is computationally
equivalent to a mixture model update. In our exper-
iments equilibria were reached in between 5 and 15
iterations.
Satisfaction of the market constraints for given
buying functions, or equivalently minimisation of
KL(c||

∑
i ri), defines a fixed point that is a market

equilibrium. These market equilibria can be explicitly
computed for various agent utilities. For a market of
identical logarithmic agents or a market of identical
exponential agents we have

ck =
∑
iWiPi(k)∑

iWi
and ck ∝

NA∏
i=1

Pi(k)
1
NA , (6)
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Exponential U(W ) = − exp(−W ) rik(Wi, c) = Wi

NG
+ ck log Pi(k)

ck
− 1

NG

∑
k′ ck′ log Pi(k

′)
ck′

Logarithmic U(W ) =
{

log(W ) for W > 0
−∞ otherwise rik(Wi, c) = WiPi(k)

Isoelastic U(W ) = W 1−ηi−1
1−ηi rik = Wi

 (ck)
ηi−1
ηi (Pi(k))

1
ηi∑

k′(ck′)
ηi−1
ηi (Pi(k′))

1
ηi


Table 1. Various utility functions and their corresponding investment functions. For the isoelastic utilities 0 < η.

Algorithm 1 Market Equilibrium
initialise c, initialise a (e.g. a = 0.1)
define stopping criterion ε
repeat

Compute optimal ri for each agent ignoring mar-
ket constraint
set (for normalising Z1)

cnew
k =

1
Z1

(∑
i rik
ck

)1−a

ck (5)

if KL(cnew||
∑
i ri(c

new)) − KL(c||
∑
i ri(c)) < 0

then
discard cnew

k and increase a.
end if

until KL(cnew||
∑
i ri(c

new)) < ε

respectively. For logarithmic agents this takes the form
of a model average or mixture of the agents’ beliefs; for
exponential agents it is a log opinion pool of beliefs.
See (Storkey, 2011) for discussion of these. The term
homogeneous will be used to refer to markets where all
agents have identical utility functions.

4.3. Equilibria for Isoelastic Agents

We cannot explicitly obtain the equilibrium for sets
of isoelastic agents with η 6= 1, and so the optimi-
sation procedure of the previous section needs to be
employed. However we can say something about the
form of solution we obtain for isoelastic agents. For
example we can obtain the following equilibrium for
homogeneous markets of isoelastic agents, all having
the same η. This solution is not closed form:

ck =

[∑
i

ViPi(k)
1
η

]η
(7)

where Vi = Wi/Zi and Zi is the implicit solution to

Zi =
∑
k

∑
j

Wj

Zj
Pj(k)

1
η

η−1

Pi(k)
1
η . (8)

Equation (7) is precisely the equation for α-mixtures
(Amari, 2007; Wu, 2009), but where Vi is defined im-
plicitly in terms of a set of weights (or wealths) Wi.
This particular expression for α-mixtures is interest-
ing because of the isoelastic property: if a single com-
ponent from the α-mixture is replaced by two iden-
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Figure 1. (a) Three different components (i.e. agent be-
liefs), each given weights Wi of 0.4, 0.4 and 0.2 from left
to right. (b) The logarithmic (i.e. mixture) combination
of these components (dashed) and the isoelastic (η = 10)
combination (solid). Note the isoelastic combination puts
more weight where the overlap of the different components
are and down-weights the regions of disagreement or iso-
lated components.

tical components with weight Wi/2, it results in ex-
actly the same model. The precise number of compo-
nents/agents does not matter, just the total wealth as-
sociated with each belief, regardless of the how many
components share it. Furthermore the influence the
agent has on the overall model depends on the level of
agreement that the agent has with the overall consen-
sus. This affect the value of Zi for that agent.
Figure 1 illustrates the distinction between an isoelas-
tic market combination and a logarithmic combination
(which is equivalent to a standard mixture). In the
isolelastic market, for η > 1, the individual beliefs are
‘squashed’ (raised to a fractional power) before being
mixed, and are then ‘unsquashed’ again after mixing.
The result of this is the areas of agreement between
agents are emphasised relative to a standard mixture.
As an alternative to (7), we can also write

ck =
∑
i

WiP
η
ik(c) (9)

where P ηik(c) is defined as

P ηik(c) =
ck

(
Pi(k)
ck

)1/η

∑
k′ ck′

(
Pi(k′)
ck′

)1/η
. (10)

Again this is not closed form, but expresses the equi-
librium ck as a weighted sum of the effective beliefs P ηik
that are associated with each agent once the impact
of the combination with rest of the market is taken
into account. Each effective belief is weighted by the
agent’s wealth Wi before aggregation.
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In the discussion above, all the agents have utilities
with the same value of η. This is a homogeneous mar-
ket structure. However there is no restriction to homo-
geneity in the context of Machine Learning Markets.
Here an inhomogeneous market structure can be used
where different agents have different η values. Hence
the equilibria of Machine Learning Markets can im-
plement a broader set of combination processes than
standard α-mixtures, and so generalises the α-mixture
formalism. We show in Section 6 that the use of an in-
homogeneous market structure provides improvements
over standard mixtures for a variety of standard ma-
chine learning benchmarks.

5. Training and Wealth Allocation

We consider a classification problem, with a train-
ing dataset DTr consisting of covariates xn and cor-
responding classifications kn. We wish to learn the
relationship between variables x and classifications k,
so that given a test point x∗ we can provide a predic-
tive distribution for the value that the corresponding
class label k∗ will take. A test dataset DTe is used to
evaluate the final performance.

5.1. Agent Beliefs and Wealth Updates

Each agent has an individual belief Pi(k). In this pa-
per we consider agents that have used standard ma-
chine learning algorithms on a training data set DTr

to derive their beliefs.
Each agent has a specific wealth Wi. The wealth af-
fects the market influence of that agent. An agent’s
action in the market changes the wealth of the agent:
the change of wealth after a single investment ri, and a
return on that purchase is given by rik∗/ck∗ where k∗
denotes the index of the event that occurs. The agents
make purchases in predictions across the whole train-
ing dataset, trading with the other agents. Payouts
are then made and each agent makes a return on the
investment. Agents that invest well (relatively) gain
wealth, whereas agents that invest in goods that don’t
pay out lose wealth and hence market influence. This
process can be repeated for a number of epochs.
For analytic purposes, we consider two wealth update
schemes: an online and a batch scheme. All the em-
pirical analyses are done using the batch scheme.

5.1.1. Online: Bayesian Model Updates

Consider the case of all agents starting with wealth
1/NA, whereNA is the number of agents. Let T denote
the first t data items and DT denote the ordered set
of those data items, with Dt being the tth item. The
total number of items is NTr. Let kt be the target for
the tth data point.
In the online setting, the agent purchases predictions
on the data points t = 1, 2, . . . , NTr one at a time. At

each time point the outcome is then revealed and all
bets are cashed in. This is an online update scheme.
Let W t

i denote the wealth of agent i after the target for
data point t is known and the winnings are received.
For isoelastic agents (including logarithmic agents
when η = 1), at each data point t, each agent bets
the whole wealth W t

i and gains a return of rikt/ckt ,
leading to

W t+1
i =

W t
i P

η
ikt

(c)∑
i′W

t
i′P

η
i′kt

(c)
(11)

using (10) and (9), and rik from Table 1.
If we equate W t+1

i with the concept P (i|Dt+1) then
this leads to

W t+1
i = P (i|DT+1) =

P ηiktP (i|DT )∑
i′ P

η
i′kt

P (i′|DT )
(12)

which gives the Bayesian update rule on observation of
a new data point at time t for a single agent likelihood
P ηikt . For logarithmic agents the belief P ηikt = Pi(kt)
and this just reduces to a Bayes update, treating each
agent as an independent probabilistic model. For isoe-
lastic agents it is still a Bayes update, but where Bayes
rule uses the effective beliefs P ηikt as the component dis-
tributions, instead of the individual agent belief Pi(kt).
The equilibrium cost ct for any item at time t after
seeing data DT is a standard Bayesian model average,
given by (9), as the weights are the posterior proba-
bilities associated with each agent (12).
The fact that these Bayesian updates occur for log-
arithmic utilities (or equivalently log-loss) has been
discussed in a different context in (Beygelzimer et al.,
2012). Establishing the extension of this rule for isoe-
lastic agents is a novel generalisation.

5.1.2. Batch: Mixing Coefficient Updates

Bayesian model averaging is appropriate if we inter-
pret each agent as an alternative competing hypothe-
sis, where ultimately one agent has the correct belief.
However, in many, or even most situations (see e.g.
(Domingos, 2000; 1997; Minka, 2002) for a continued
discussion), we may believe that the most appropriate
model is a combination of beliefs rather than a single
one. In those settings Bayesian model averaging is in-
appropriate. Rather, we may believe the data is best
described by a mixture of probabilities, and we wish
to determine optimal mixing proportions.
Consider, instead, splitting the agent wealth equally
across test cases, and requiring the agents to place
bets on all test cases at once. In this case the wealth
updates are equivalent to a single step of the mixture
component updates. Specifically the return from con-
sidering data item t is

P (i|t) def=
WiP

η
ikt

(c)∑
i′Wi′P

η
i′k(c)

. (13)

Equation (13) is precisely the form of responsibility
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Tests
Waveform Vehicle Image Ionosphere Breast Cancer Sonar Letter Recognition

21f, 3c, 5000d 18f, 3c, 946d 19f, 7c, 2310d 34f, 2c, 351d 10f, 2c, 699d 60f, 2c, 208d 16f, 26c, 20000d

R
F

LLR 30 7.9 21 1.9 2 1.1 190
σ(LLR) 5.9 2.4 3.1 1.9 1.9 0.8 11

p 6.8× 10−23 1.1× 10−17 1.9× 10−26 3.4× 10−6 1.2× 10−6 6.4× 10−9 3.9× 10−38

is
o
N

N LLR −41 −31 −8 5.6 0.5 2.2 210
σ(LLR) 15 9.8 7.9 8 3.8 5.1 29

p 1 1 1 0.00031 0.22 0.012 3.4× 10−27

N
N

LLR 28 12 27 19 20 16 390
σ(LLR) 33 21 19 11 10 7.9 41

p 3.7× 10−5 0.0024 5.1× 10−9 5.4× 10−11 4.8× 10−12 6.2× 10−12 1.5× 10−30

is
o
D

T LLR 28 7.3 16 2.1 3.7 1.4 12
σ(LLR) 13 5.8 8.8 3.2 3.4 2.6 28

p 5.2× 10−13 6.9× 10−8 2.4× 10−11 0.00056 8.8× 10−7 0.0035 0.01

D
T

LLR 2.3× 102 42 61 6.8 14 8.8 580
σ(LLR) 30 13 18 4.2 7.2 3.6 73

p 6.5× 10−28 2.7× 10−17 3.9× 10−18 4.4× 10−10 1.4× 10−11 2.8× 10−14 3.1× 10−28

Table 2. Comparisons against isoRF. The table uses an isoelastic market of trees from a random forest (isoRF) as a
baseline and compares this with a number of methods above (positive LLR => isoRF is better). The isoelastic market
of trees (isoRF) performs better than the other standalone classifiers and random forest aggregation which is among
state of the art on all these problems (Caruana & Niculescu-Mizil, 2006). The exception is that isoRF is beaten in some
cases by the isoelastic market of neural networks. The other methods listed are the standalone random forest (RF),
an inhomogeneous isoelastic market of neural networks (isoNN), a standalone neural network (NN), an inhomogeneous
isoelastic market of decision trees (isoDT) and a standalone decision tree (DT). LLR is the average test log likelihood-
ratio (difference of log likelihoods) between the isoRF and other listed methods. σ(LLR) is the standard error of that log
likelihood-ratio across different data samples. The p values give the sampling probability of each method being better
than isoRF using a right-tailed paired t-test with 29 degrees of freedom. The information about the dataset is displayed
below its name, where f is the number of features, c the number of classes, and d the number of data points. Comparing
test log likelihood takes into account the full prediction probabilities. It captures not just the highest probability class
but the quality of the measure of uncertainty across classes.

calculation for a mixture model, but where we have
used the effective beliefs for the isoelastic agents. The
update rule Wi =

∑
t P (i|t), which is simply the ac-

cumulated return over the whole dataset, matches the
update rule for mixture coefficients.
Hence across the whole range of isoelastic agents, ini-
tialising agents with equal wealth and repeatedly ap-
plying the batch update rule reproduces the usual
mixture coefficient updates applied to an α-mixture
model. However multiple different values of α can be
used for different agents.

6. Results

Machine Learning Markets with logarithmic and iso-
elastic agents were compared with decision trees, neu-
ral networks and random forests on a number of UCI
datasets3. Experimental data was split into two sets,
with 2/3 of the data being used for training and 1/3
for testing, with a maximum total dataset size of 3200
items. For large multiclass data, we used the Letter
Recognition dataset. The markets of random forests
were built using the Matlab random forest imple-
mentation, treebagger, with 20 decision trees pruned
by requiring a minimum of ten of observations per tree
leaf. Individual decision trees were extracted from the
random forest after it has been trained on all of the
training data, and were used to generate each of the
20 agents’ beliefs. In our comparisons, market wealths
were adapted on the complete training set with 1 train-
ing epoch. 30 iterations of each test were performed

3Available at: http://archive.ics.uci.edu/ml/

to generate meaningful statistics, with data being ran-
domly permuted before each test. The same series of
random seeds were used for each iteration of each test
in order to fairly compare different utility functions.
Wealth updates were performed using the batch mech-
anism described in Section 5.1.2.
Inhomogeneous isoelastic markets were created by
sampling values for η using (η − 1) ∼ Γ(k, θ), with
shape parameter k = 3 and scale parameter θ = 1.
This produces a diverse set of η values for different
agents, while ensuring η > 1. More risk averse utility
functions (η > 1) were chosen as they emphasise re-
gions of agreement between agents rather than regions
of disagreement (see (7) and Figure 1).
The primary purpose of this analysis is to test differ-
ent possible probabilistic combination methods against
other single classifiers. Hence, we compute test log-
likelihoods as the main evaluation metric. This is given
by LL =

∑T
t log(P (kt|xt)), where P (kt|xt) is the prob-

ability of the true value kt given covariates xt. For a
market we have P (kt|xt) = ckt where c is the equi-
librium cost from the market given all agents in the
market know the covariates x. Logs of test likelihood
ratios are used when different models are compared.

6.1. Relative Classifier Performance

We compare the methods used in Machine Learning
Markets against other standard classifiers. Machine
Learning Markets can utilise any probabilistic classi-
fier as the beliefs for each agent, and so we compare a
number of single classifiers with a market of those clas-

http://archive.ics.uci.edu/ml/
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Figure 2. A boxplot (the red ’x’ represents the mean, and
black dots represent one standard deviation from the mean)
of the scaled test log likelihood-ratios in the isoelastic and
logarithmic markets for many iterations, scaled by the
number of data points. Note that in general, the log-
likelihood for isoelastic agents is significantly higher than
for logarithmic agents. Letter recognition is excluded as it
would be off the top of the figure.

sifiers. The exception is for random forests, which is
already an aggregate classifier, and there we compare
a random forest, against a market of trees that match
the trees in the random forest. An inhomogeneous
isoelastic market with batch updates is used for all
comparisons. Table 2 presents the results along with
standard deviations. The market approaches outper-
form all the standard approaches on all datasets, with
clear statistical significance. This includes improve-
ments over random forests. Interestingly, the market
of neural networks performed better than the market
of random trees in some settings.

6.2. Isoelastic versus Logarithmic Markets

Figure 2 shows 1
NTe

log
(

LISO

LLOG

)
, where NTe is the num-

ber of test points, and L denotes the test likelihood.
This is referred to as the (scaled) log of the test
likelihood-ratio between the inhomogeneous isoelastic
market and the logarithmic market predictions.
In general, the log likelihood-ratios are positive, mean-
ing that isoelastic markets have higher test perfor-
mance than logarithmic markets. Further, they are
positive to one standard deviation (the black dots in
Figure 2), implying that isoelastic markets perform
better (paired t-test p < 0.01 in all cases).

6.3. Varying the Parameter of Isoelasticity

Figure 3 shows that the test log-likelihood varies
for homogeneous isoelastic markets with varying η.
Searching for a good η via a cross validation pro-
cess can be computationally expensive. An alterna-
tive approach is to randomly allocate an η to each
of the agents, producing inhomogeneous markets, and
perform market updates in order to tune the mixing
proportions for the different agents. Figure 3 demon-
strates that the inhomogeneous market provides re-
sults about as good as if we has known the optimal

test η but with significantly less computational cost.
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Figure 3. Boxplot showing the test log-likelihoods for dif-
ferent values of η (on waveform dataset). The red line gives
the test log-likelihood for the same data and an inhomoge-
neous market with (η − 1) ∼ Γ(3, 1). The inhomogeneous
market performs on par with the market with the best
η value (’best’ as assessed a posteriori on the test data),
without prior knowledge of good η values.

6.4. Batch Wealth Updates and Performance

Figure 4 shows that adapting wealth improves the
test log-likelihood. This is true for both logarithmic
and isoelastic utility functions. We have noticed that
wealth adaptation does not make a significant differ-
ence on accuracy for small multiclass datasets, how-
ever, improvements in accuracy are observed on the
large multiclass Letter Recognition data. In general,
learning is more beneficial in cases where some agents
are significantly poorer performers than others (e.g.
they overfit, or are trained on biased data etc.).
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Figure 4. The (a) log likelihoods and (b) accuracy for isoe-
lastic and logarithmic utility functions, over a number of
training epochs for the Letter datasets. Value of log utility
at time zero is equivalent to the value for a random forest.
The isoelastic utility is better than logarithmic utility and
random forest in both accuracy and log likelihood. The
gain from using an isoelastic utility is greater than the
gain from wealth adaptation (equivalent to mixture weight
optimisation). The wealth adaptation does provide some
benefit, but is more much more useful when spurious or
poor classifiers are also included. Here most individual
classifiers provide a similar contribution.
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7. Discussion

Machine Learning Markets can reflect many of the
properties of principled probabilistic methods in hand-
crafted probabilistic models. The design of Machine
Learning Markets allows the implicit definition of pow-
erful models. We show that Baysesian model averag-
ing and mixture model learning can be naturally im-
plemented using market mechanisms. We show that
different utility functions have a significant effect on
the market combination results, and that isoelastic
utilities are more effective in a number of tests than
utilities that implement standard mixtures. The bene-
fits of inhomogeneous markets of isoelastic agents over
state of the art classifiers has been demonstrated, and
the understanding of isoelastic utilities as encoding a
generalisation of α-mixtures has been developed.
There are two immediate extensions to this work to be
considered. First, the adaptability of markets means
that tests of this approach in the context of dataset
shift, or non-stationary environments, would be valu-
able. Another angle worthy of investigation is the mix-
ture of expert setting. In the context of this paper, all
agents had beliefs about the whole predictive dataset.
It is likely that an agent will also learn about its own
performance in the market: assessing what situations
it is likely to generate a positive return on. Such agents
would allocate different resources to different condi-
tional situations akin to a mixture of experts.
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