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1 Overview

In this chapter, a number of common forms of dataset shift are introduced, and
each is related to a particular form of causal probabilistic model. Examples are
given for the different types of shift, and some corresponding modelling approaches.
By characterising dataset shift in this way, there is potential for the development
of models which capture the specific types of variations, combine different modes
of variation, or do model selection to assess whether dataset shift is an issue in
particular circumstances. As an example of how such models can be developed, an
illustration is provided for one approach to adapting Gaussian process methods for
a particular type of dataset shift called Mixture Component Shift.

After the issue of dataset shift is introduced, the distinction between conditional
and unconditional models is elaborated in Section 3. This difference is important in
the context of dataset shift, as it will be argued in Section 5 that dataset shift makes
no difference for causally conditional models. This form of dataset has been called
covariate shift. In Section 6, another simple form of dataset shift is introduced: prior
probability shift. This is followed by Section 7 on sample selection bias, Section 8
on imbalanced data and Section 9 on domain shift. Finally three different types of
source component shift are given in Section 10. One example of modifying Gaussian
process models to apply to one form of source component shift is given in Section 11.
A brief discussion on the issue of determining whether shift occurs (Section 12) and
on the relationship to Transfer Learning (Section 13) concludes the chapter.

2 Introduction

A camera company develops some expert pattern recognition software for their
cameras but now wants to sell it for use on other cameras. Does it need to worry
about the differences?

The country Albodora has done a study that shows the introduction of a partic-
ular measure has aided in curbing underage drinking. Bodalecia’s politicians are
impressed by the results and what to utilize Albodora’s approach in their own
country. Will it work?



A consultancy provides network intrusion detection software, developed using ma-
chine learning techniques on data from 4 years ago. Will the software still work as
well now as it did when it was first released? If not, do the company need to do a
whole further analysis, or are there some simple changes that can be made to bring
the software up to scratch?

In the real world, the conditions in which we use the systems we develop will differ
from the conditions in which they were developed. Typically environments are non-
stationary, and sometimes the difficulties of matching the development scenario to
the use are too great or too costly.

In contrast, textbook predictive machine learning methods work by ignoring these
differences. They presume either that the test domain and training domain match,
or that it makes no difference if they do not match. In this book we will be asking
about what happens when we allow for the possibility of dataset shift. What hap-
pens if we are explicit in recognizing that in reality things might change from the
idealized training scheme we have set up?

The scenario can be described a little more systematically. Given some data, and
some modelling framework, a model can be learnt. This model can be used for
making predictions P (y|x) for some targets y given some new x. However, if there is
a possibility that something may have changed between training and test situations,
it is important to ask if a different predictive model should be used. To do this, it
is critical to develop an understanding of the appropriateness of particular models
in the circumstance of such changes. Knowledge of how best to model the potential
changes will enable better representation of the result of these changes. There is also
the question of what needs to be done do to implement the resulting process. Does
the learning method itself need to be changed, or is there just post-hoc processing
that can be done to the learnt model to account for the change?

The problem of dataset shift is closely related to another area of study known by
various terms such as transfer learning or inductive transfer. Transfer Learning
deals with the general problem of how to transfer information from a variety of
previous different environments to help with learning, inference and prediction in
a new environment. Dataset shift is more specific: it deals with the business of
relating information in (usually) two closely related environments to help with the
prediction in one given the data in the other(s).

Faced with the problem of dataset shift, we need to know what we can do. If
it is possible to characterise the types of changes that occur from training to test
situation, this will help in knowing what techniques are appropriate. In this chapter
some of the most typical types of dataset shift will be characterised.

The aim, here, is to provide an illustrative introduction to dataset shift. There is
no attempt to provide an exhaustive, or even systematic literature review: indeed
the literature is far too extensive for that. Rather, the hope is that by taking a
particular view on the problem of dataset shift, it will help to provide an organi-
sational structure which will enable the large body of work in all these areas to be
systematically related and analysed, and will help establish new developments in
the field as a whole.

Gaussian process models will be used as illustrations in parts of this chapter. It
would be foolish to reproduce an introduction to this area when there are already
very comprehensible alternatives. Those who are unfamiliar with Gaussian pro-
cesses, and want to follow the various illustrations, are referred to [19]. Gaussian
processes are a useful predictive modelling tool with some desirable properties. They
are directly applicable to regression problems, and can be used for classification via
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logistic transformations. Only the regression case will be discussed here.

3 Conditional and Generative Models

This chapter will describe methods for dataset shift using probabilistic models. A
probabilistic model relates the variables of interest by defining a joint probability
distribution for the values those variables take. This distribution determines which
values of the variables are more or less probable, and hence how particular variables
are related: it may be that the probability that one variable takes a certain value is
very dependent on the state of another. A good model is a probability distribution
that describes the understanding and the occurrence of those variables well. Very
informally, a model that assigns low probability to things that are not observed and
relationships that are forbidden or unlikely and high probability to observed and
likely items is favoured over a model that does not.

In the realm of probabilistic predictive models it is useful to make a distinction
between conditional and generative models. The term generative model will be
used to refer to a probabilistic model (effectively a joint probability distribution)
over all the variables of interest (including any parameters). Given a generative
model we can generate artificial data from the model by sampling from the required
joint distribution, hence the name. A generative model can be specified using a
number of conditional distributions. Suppose the data takes the form of covariate x
and target y pairs. Then by way of example, P (y,x) can be written as P (x|y)P (y),
and may also be written in terms of other hidden latent variables which are not
observable. For example we could believe the distribution P (y,x) depends on some
other factor r and we would write

P (y,x) =
∫
drP (y,x|r)P (r) (1)

where the integral is a marginalisation over the r, which simply means that as r is
never known it needs to be integrated over in order to obtain the distribution for
the observable quantities y and x. Necessarily distributions must also be given for
any latent variables.

Conditional models are not so ambitious. In a conditional model the distribution of
some smaller set of variables is given for each possible known value of the other vari-
ables. In many useful situations (such as regression) the value of certain variables
(the covariates) is always known, and so there is no need to model them. Build-
ing a conditional model for variables y given other variables x implicitly factorises
the joint probability distribution over x and y, as well as parameters (or latent
variables) Θx and Θy, as P (y|x,Θy)P (x|Θx)P (Θy)P (Θx). If the values of x are
always given, it does not matter how good the model P (x) is: it is never used in
any prediction scenario. Rather, the quality of the conditional model P (y|x) is all
that counts, and so conditional models only concern themselves with this term. By
ignoring the need to model the distribution of x well, it is possible to choose more
flexible model parameterisations than with generative models. Generative models
are required to tractably model both the distributions over y and x accurately.
Another advantage of conditional modelling is that the fit of the predictive model
P (y|x) is never compromised in favour of a better fit of the unused model P (x) as
they are decoupled.

If the generative model actually accurately specifies a known generative process
for the data, then the choice of modelling structure may fit the real constraints
much better than a conditional model and hence result in a more accurate param-
eterisation. In these situations generative models may fare better than conditional
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ones. The general informal consensus is that in most typical predictive modelling
scenarios standard conditional models tend to result in lower errors than standard
generative models. However this is no hard rule and is certainly not rigorous.

It is easy for this terminology to get confusing. In the context of this chapter we will
use the term conditional model for any model that factorises the joint distribution
(having marginalised for any parameters) as P (y|x)P (x), and unconditional model
for any other form of factorisation. The term generative model will be used to refer
to any joint model (either of conditional or unconditional form) which is used to
represent the whole data in terms of some useful factorisation, possibly including
latent variables. In most cases the factorised form will represent a (simplified) causal
generative process. We may use the term causal graphical model in these situations
to emphasise that the structure is more than just a representation of some particular
useful factorisation, but is presumed to be a factorisation that respects the way the
data came about.

It is possible to analyse data using a model structure that is not a causal model
but still has the correct relationships between variables for a static environment.
One consequence of this is that it is perfectly reasonable to use a conditional form
of model for domains that are not causally conditional: many forms of model can
be statistically equivalent. If the P (x) does not change then it does not matter.
Hence conditional models can perform well in many situations where there is no
dataset shift regardless of the underlying beliefs about the generation process for
the data. However in the context of dataset shift, there is presumed to be an
interventional change to some (possibly latent) variable. If the true causal model
is not a conditional model, then this change will implicitly cause a change to the
relationship P (y|x). Hence the learnt form of the conditional model will no longer
be valid. Recognition of this is vital: just because a conditional model performs
well in the context of no dataset shift does not imply its validity or capability in
the context of dataset shift.

4 Real-Life Reasons for Dataset Shift

Whether using unconditional or conditional models, there is a presumption that
the distributions they specify are static; i.e. they do not change between the time
we learn them and the time we use them. If this is not true, and the distributions
change in some way, then we need to model for that change, or at least the possibility
of that change. To postulate such a model requires an examination of the reasons
why such a shift may occur.

Though there are no doubt an infinite set of potential reasons for these changes,
there are a number of ways of collectively characterising many forms of shift into
qualitatively different groups. The following will be discussed in this chapter:

Simple Covariate Shift is when only the distributions of covariates x change and
everything else is the same.

Prior Probability Shift is when only the distribution over y changes and every-
thing else stays the same.

Sample Selection Bias is when the distributions differ as a result of an unknown
sample rejection process.

Imbalanced Data is a form of deliberate dataset shift for computational or mod-
elling convenience.

Domain Shift involves changes in measurement.
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Source Component Shift involves changes in strength of contributing compo-
nents.

Each of these relates to a different form of model. Unsurprisingly, each form suggests
a particular approach for dealing with the change. As each model is examined in the
proceeding sections, the particular nature of the shift will be explained, some of the
literature surrounding that type of dataset shift will be mentioned, and a graphical
illustration of the overall model will be given. The graphical descriptions will take
a common form: they will illustrate the probabilistic graphical (causal) model for
the generative model. Where the distributions of a variable may change between
train and test scenarios, the corresponding network node is darkened. Each figure
will also illustrate data undergoing the particular form of shift by providing samples
for the training (light) and test (dark) situations. These diagrams should quickly
illustrate the type of change that is occurring. In the descriptions, a subscript tr
will denote a quantity related to the training scenario, and a subscript te will denote
a quantity relating to the test scenario. Hence Ptr(y) and Pte(y) are the probability
of y in training and test situations respectively.

5 Simple Covariate Shift

The most basic form of dataset shift occurs when the data is generated according
to a model P (y|x)P (x) and where the distribution P (x) changes between training
and test scenarios. As only the covariate distribution changes, this has been called
covariate shift [20]. See Figure 1 for an illustration of the form of causal model for
covariate shift.

Figure 1: Simple Covariate Shift. Here the causal model indicated the targets y are
directly dependent on the covariates x. In other words the predictive function and
noise model stays the same, it is just the typical locations x of the points at which
the function needs to be evaluated that change. In this figure and throughout the
causal model is given on the left with the node that varies between training and test
made darker. To the right is some example data, with the training data in shaded
light and the test data shaded dark.

A typical example of covariate shift occurs in assessing the risk of future events
given current scenarios. Suppose the problem was to assess the risk of lung cancer
in 5 years (y) given recent past smoking habits (x). In these situations we can be
sure that the occurrence or otherwise of future lung cancer is not a causal factor
of current habits. So in this case a conditional relationship of the form P (y|x) is
a reasonable causal model to consider1. Suppose now that changing circumstances

1Of course there are always possible confounding factors, but for the sake of this illus-
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(e.g. a public smoking ban) affect the distribution over habits x. How do we account
for that in our prediction of risk for a new person with habits x∗?

It will perhaps come as little surprise that the fact that the covariate distribution
changes should have no effect on the model P (y|x∗). Intuitively this makes sense.
The smoking habits of some person completely independent of me should not affect
my risk of lung cancer if I make no change at all. From a modelling point of view we
can see this from our earlier observation in the static case this is simply a conditional
model: it gives the same prediction for given x, P (y|x) regardless of the distribution
P (x). Hence in the case of dataset shift, it still does not matter what P (x) is, or
how it changes. The prediction will be the same.

This may seem a little laboured, but the point is important to make in the light
of various pieces of recent work that suggest there are benefits in doing something
different if covariate shift occurs. The claim is that if the class of models that
is being considered for P (y|x) does not contain the true conditional model, then
improvements can be gained by taking into account the nature of the covariate
shift. In the next section we examine this, and see that this work effectively makes
a change of global model class for P (y|x) between the training and test cases. This is
valuable as it makes it clear that if the desire is (asymptotic) risk minimisation for a
constant modelling cost, then there may be gains to be made by taking into account
the test distribution. Following this discussion we show that Gaussian processes
are nonparametric models that truly are conditional models, in that they satisfy
Kolmogorov Consistency. This same characteristic does not follow for probabilistic
formulations of Support Vector Classifiers.

5.1 Is there really no modelling implication?

There are a number of recent papers that have suggested that something different
does need to be done in the context of covariate shift. For example in [20], the
author proposes an importance reweighting of data points in their contribution to
the estimator error: points lying in regions of high test density are more highly
weighted that those in low density regions. This was extended in [26], with the
inclusion of a generalisation error estimation method for this process of adapting
for covariate shift. In [24, 25], the importance re-weighting is made adaptable on
the basis of cross-validation error.

The papers make it clear that there is some benefit to be obtained by doing some-
thing different in the case of covariate shift. The argument here is that these pa-
pers indicate a computational benefit rather than a fundamental modelling benefit.
These papers effectively compare different global model classes for the two cases:
case one, where covariate shift is compensated for, and case two where covariate
shift is not compensated for. This is not immediately obvious because the apparent
model class is the same. It is just that in compensating for covariate shift the model
class is utilised locally (the model does not need to account for training data that
is seen but is outside the support of the test data distribution), whereas when not
compensating the model class is used globally.

As an example, consider using a linear model to fit nonlinear data (Figure 2a).
When not compensating for covariate shift, we obtain the fit given by the dashed
line. When compensating for covariate shift, we get the fit given by the solid
line. In the latter case, there is no attempted explanation for much of the observed

tration we choose to ignore that for now. It is also possible the samples are not drawn
independently and identically distributed due to population effects (e.g. passive smoking)
but that too is ignored here.
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training data, which is fit very poorly by the model. Rather the model class is being
used locally. As a contrast consider the case of a local linear model (Figure 2b).
Training the local linear model explains the training data well, and the test data
well. However only one of the local linear components is really used when doing
prediction. Hence the effort spent computing the linear components for regions
outside of the support of the test data was wasted.

(a)

(b)

Figure 2: Covariate shift for mis-specified models: (a) The linear model is a poor
fit to the global data (dashed line). However by focussing on the local region
associated with the test data distribution the fit (full line) is much better as a local
linear model is more appropriate. (b) The global fit for a local linear model is more
reasonable, but involves the computation of many parameters that are never used
in the prediction.

There are a number of important contributions that stem from the recent study
of covariate shift. It clarifies that there are potential computational advantages of
adjusting for covariate shift due to the fact that it may be possible to use a simpler
model class but only focus on a local region relevant to the test scenario, rather than
worrying about the global fit of the model. There is no need to compute parameters
for a more complicated global model, or for a multitude of local fits that are never
used. Furthermore it also makes use of an issue in semi-supervised learning: the
nature of the clusters given by the test distribution might be an indicator of a data
region that can be modelled well by a simple model form.

There is a another contention that is certainly worth considering here. Some might
argue that there are situations where there can be strong a priori knowledge about
the model form for the test data, but very little knowledge about the model form
for the training data, as that may, for example, be contaminated with a number of
other data sources about which little is known. In this circumstance it seems that
it is vital to spend the effort modelling the known form of model for the test region,
ignoring the others. This is probably a very sound policy. Even so, there is still the
possibility that even the test region is contaminated by these other sources. If it is
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possible to untangle the different sources this could serve to improve things further.
This is discussed more in the context of source component shift.

5.2 Gaussian Processes and Conditional Modelling

Suppose instead of using a linear model, a Gaussian process is used. How can we see
that this really is a conditional model where the distribution of the covariates has
no effect on the predictions? This follows from the fact that no matter what other
covariate samples we see, the prediction for our current data remains the same; that
is, Gaussian processes satisfy Kolmogorov consistency:

P ({yi}|{xi}, {xk, yk}) =
∫
dy∗P ({yi}, y∗|{xi},x∗, {xk, yk}) (2)

= P ({yi}|{xi},x∗, {xk, yk}) (3)

where (2) results from the definition of a Gaussian process, and (3) from basic
probability theory (marginalisation). In this equation the yi are the test targets,
xi the test covariates, xk and yk, the training data, and x∗, y∗ a potential extra
training point. However we never know the target y∗ and so it is marginalised over.
The result is that introducing the new covariate point x∗ has had no predictive
effect.

Using Gaussian processes in the usual way involves training on all the data points:
the estimated conditional model P (y|x) has made use of all the available infor-
mation. If one of the data points was downweighted (or removed altogether) the
effect would simply be greater uncertainty about the model, resulting in a broader
posterior distribution over functions.

It may be considered easier to specify a model class for a local region than a model
class for the data as a whole. Practically this may be the case. However by specifying
that a particular model may be appropriate for any potential local region, we are
effectively specifying a model form for each different region of space. This amounts
to specifying a global model anyway, and indeed one derivation of the Gaussian
process can be obtained from infinite local radial basis function models [7].

Are all standard nonparametric models also conditional models? In fact some com-
mon models are not: the Support Vector Machine (SVM) classifier does not take
this form. In [21, 22], it is shown that in order for the support vector machine to
be defined as a probabilistic model, a global compensation factor needs to be made
due to the fact that the SVM classifier does not include a normalisation term in its
optimisation. One immediate consequence of this compensation is that the prob-
abilistic formulation of the SVM does not satisfy Kolmogorov consistency. Hence
the SVM is dependent on the density of the covariates in its prediction.

This can be shown, purely by way of example, for the linear SVM regression case.
Generalisations are straightforward. We present an outline argument here, following
the notation in [19]. The linear support vector classifier maximises

exp

(
−

N∑
i=1

(1− yi(wT .xi)+

)
exp

(
− 1

2C
|w|2

)
. (4)

where C is some constant, yi are the training targets, xi are the covariates (aug-
mented with an addition unit attribute) and w the linear parameters. The (.)+
notation is used to denote the function (x)+ = x iff x > 0 and is zero otherwise.
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Equation (4) can be rewritten as[
N∏
i=1

1
Zi(w)

exp(−(1− yi(wTxi)+)

]
Z(w) exp

(
− 1

2C
|w|2

)
. (5)

where ZN =
∏N
i=1 Zi(w), and Zi(w) =

∑
yi=±1 exp(−(1− yi(wTxi)+) is a normal-

isation constant, so now

1
Zi(w)

exp(−(1− yi(wTxi)+) def= P (yi|w) (6)

can be interpreted as a probability. Hence the support vector objective can be
written [

N∏
i=1

P (yi|w)

]
ZN (w) exp

(
− 1

2C
|w|2

)
. (7)

Consider the cases N = N∗ and N = N∗ + 1. Starting with the latter, marginal-
ization over yN∗+1 is now straightforward as it only occurs as a probability. So the
marginal objective is now[

N∗∏
i=1

P (yi|w)

]
ZN∗+1(w) exp

(
− 1

2C
|w|2

)
. (8)

Marginalising out over wN∗+1 then gives[
N∗∏
i=1

P (yi|w)

]
ZN∗+1(w) exp

(
− 1

2C
|w|2

)
. (9)

However ZN∗+1(w) 6= ZN∗(w) due to the extra product term. Specifically the
dependence on w is different, so the objective (9) does not match the objective
(7) for N = N∗. Hence the support vector objective for the case of an unknown
value of target at a given point is different from the objective function without
considering that point. The standard probabilistic interpretation of the support
vector classifier does not satisfy Kolmogorov consistency, and seeing a covariate at
a point will affect the objective function even if there is no knowledge of the target
at that point. Hence the SVM classifier is in some way dependent on the covariate
density, as it is dependent purely on the observation of covariates themselves.

6 Prior Probability Shift

Prior probability shift is a common issue in simple generative models. A popular
example stems from the availability of naive Bayes models for the filtering of spam
email. In cases of Prior Probability Shift, an assumption is made that a causal
model of the form P (x|y)P (y) is valid (see Figure 3) and Bayes rule is used to
inferentially obtain P (y|x). Naive Bayes is one model that makes this assumption.
The difficulty occurs if the distribution P (y) changes between training and test
situations. As y is what we are trying to predict it is unsurprising that this form
of dataset shift will affect the prediction.

For a known shift in P (y), prior probability shift is easy to correct for. As it is
presumed that P (x|y) does not change, this model can be learnt directly from the
training data. However the learnt Ptr(y) is no longer valid, and needs to be replaced
by the known prior distribution in the test scenario Pte(y).
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Figure 3: Prior Probability Shift. Here the causal model indicated the covariates
x are directly dependent on the predictors y. The distribution over y can change,
and this effects the predictions in both the continuous case (left) and the class
conditional case (right).

If, however, the distribution Pte(y) is not known for the test scenario, then the
situation is a little more complicated. Making a prediction

P (y|x) =
P (x|y)P (y)

P (x)
(10)

is not possible without knowledge of P (y). But given the model P (x|y) and the
covariates for the test data, certain distributions over y are more or less likely.
Consider the spam filter example again. If in the test data, the vast majority
of the emails contain spammy words, rather than hammy words, we would rate
P (spam) = 0 as an unlikely model compared with other models such as P (spam) =
0.7. In saying this we are implicitly using some a priori model of what distributions
P (spam) are acceptable to us, and then using the data to refine this model.

Restated, to account for prior probability shift where the precise shift is unknown
a prior distribution over valid P (y) can be specified, and the posterior distribution
over P (y) computed from the test covariate data. Then the predicted target is given
by the sum of the predictions obtained for each P (y) weighted by the posterior
probability of P (y).

Suppose P (y) is parameterised by θ, and a prior distribution for P (y) is defined
through a prior on the parameters P (θ). Also assume that the model Ptr(x|y) has
been learnt from the training data. Then the prediction taking into account the
parameter uncertainty and the observed test data is

P (y1|{xi}) =
∫
dθP (y1|x1, θ)Pte(θ|{xi}) (11)

=
∫
dθ
Ptr(x1|y1)P (y1|θ)

Ptr(x1|θ)
Pte(θ|{xi}) (12)

where

Pte(θ|{xi}) ∝
∏
i

∑
yi

Ptr(xi|yi)P (yi|θ)P (θ) (13)

and where i counts over the test data, i.e. these computations are done for the
targets yi for test points xi. The ease with which this can be done depends on
how many integrals or sums are tractable, and whether the posterior over θ can be
represented compactly.
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7 Sample Selection Bias

Sample selection bias is a statistical issue of critical importance in numerous anal-
yses. One particular area where selection bias must be considered is survey design.
Sample selection bias occurs when the training data points {xi} (the sample) do
not accurately represent the distribution of the test scenario (the population) due
to a selection process for each item i that is (usually implicity) dependent on the
target variable yi.

In doing surveys, the desire is to estimate population statistics by surveying a small
sample of the population. However, it is easy to set up a survey that means that
certain groups of people are less likely to be included in the survey than others
because, either they refuse to be involved, or they were never in a position to ask
to be involved. A typical street survey, for example, is potentially biased against
people with poor mobility who may be more likely to be using other transport
methods than walking. A survey in a train station is more likely to catch people
engaging in leisure travel than busy commuters with optimized journeys who may
refuse to do the survey for lack of time.

Sample selection bias is certainly not restricted to surveys. Other examples include
estimating the average speed of drivers by measuring the speeds of cars passing a
stationary point on a motorway; more fast drivers will pass the point than slow
drivers, simply on account of their speed. In any scenario relying on measurement
from sensors, sensor failure may well be more likely in environmental situations
that would cause extreme measurements. Also the process of data cleaning can
itself introduce selection bias. For example, in obtaining handwritten characters,
completely unintelligible characters may be discarded. But it may be that certain
characters are more likely to be written unclearly.

Sample selection bias is also the cause of the well known phenomenon called “regres-
sion to the mean.” Suppose that a particular quantity of importance (e.g. number
of cases of illness X) is subject to random variations. However that circumstance
could also be affected by various causal factors. Suppose two that, across the coun-
try, the rate of illness X is measured, and is found to be excessive in particular
locations Y. As a result of that, various measures are introduced to try to curb
the number of illnesses in these regions. The rate of illnesses are measured again
and, lo and behold, things have improved and regions Y no longer have such bad
rates of illnesses. As a result of that change it is tempting for the uninitiated to
conclude that the measures were effective. However as the regions Y were chosen on
the basis of a statistic that is subject to random fluctuations, and the regions were
chosen because this statistic took an extreme value, even if the measures had no
effect at all the illness rates would be expected to reduce at the next measurement
precisely because of the random variations. This is sample selection bias because
the sample taken to assess improvement was precisely the sample that was most
likely to improve anyway. The issue of reporting bias is also a selection bias issue.
“Interesting” positive results are more likely to be reported than “boring” negative
ones.

The graphical model for sample selection bias is illustrated in Figure 4. Consider
two models: Ptr denotes the model for the training set, and Pte the model for the
test set. For each datum (x,y) in the training set:

Ptr(y,x) = P (y,x|v = 1) = P (v = 1|y,x)P (y|x)P (x) (14)

and for each datum in the test set:

Pte(y,x) = P (y,x) = P (y|x)P (x). (15)
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Figure 4: Sample Selection Bias. The actual observed training data is different
from the test data because some of the data is more likely to be excluded from the
sample. Here v denotes the selection variable, and an example selection function is
given by the equiprobable contours. The dependence on y is crucial as without it
there is no bias and this becomes a case of simple covariate shift.

Here v is a binary selection variable that decides whether a datum would be included
in the training sample process (v = 1) or rejected from the training sample (v = 0).

In much of the sample selection literature this model has been simplified by assuming

P (y|x) = P (ε = y − f(x)) and (16)
P (v = 1|y,x) = P (ν > g(x)|y − f(x)) = P (ν > g(x)|ε) (17)

for some densities P (ε) and P (ν|ε), function g and map f . The issue is to model
f , which is the dependence of the targets y on covariates x, while also modelling
for g, which produces the bias. In words the model says there is a (multivariate)
regression function for y given covariates x, where the noise is independent of x.
Likewise equation (17) describes a classification function for the selection variable v
in terms of x, but where the distribution is dependent on the deviation of y from its
predictive mean. Note that in some of the literature, there is an explicit assumption
that v depends on some features in addition to x that control the selection. Here
this is simplified by including these features in x and adjusting the dependence
encoded by f accordingly.

Study of sample selection bias has a long history. [8] proposed the first solution
to the selection bias problem which involved presuming y = y is scalar (hence also
ε = ε and f = f), f and g are linear, and the joint density P (ε, ν) = P (ε)P (ν|ε)
is Gaussian. Given this the likelihood of the parameters can be written down for
a given complete dataset (a dataset including the rejected samples). However in
computing the maximum likelihood solution for the regression parameters, it turns
out the rejected samples are not needed. Note that in the case that ε and µ are
independent, and P (ε, ν) = P (ε)P (µ), there is no predictive bias, and this is then
a case of simple covariate shift.

Since the seminal paper by Heckman, many other related approaches have been
proposed. These include those that relax the Gaussianity assumption for µ and σ,
most commonly by mapping the Gaussian variables through a known nonlinearity
before using them [16] and using semi-parametric methods directly on P (ε|ν) [9].
More recent methods include [31], where the author focuses on the case where
P (v|x,y) = P (v|y), [6] which looks at maximum entropy density estimation under
selection bias and [11] which focuses on using additional unbiased covariate data to
help estimate the bias. More detailed analysis of the historical work on selection
bias is available in [29] and a characterisation of types of selection bias is given in
[10].
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8 Imbalanced Data

It is quite possible to have a multiclass machine learning problem where one or more
classes is very rare compared with others. This is called the problem of imbalanced
data. Indeed the prediction of rare events (e.g. loan defaulting) often provide the
most challenging problems. This imbalanced data problem is a common cause of
dataset shift by design.

If the prediction of rare events is the primary issue, to use a balanced dataset
may involve using a computationally infeasible amount of data just in order to get
enough rare cases to be able to characterize the class accurately. For this reason it is
common to “balance” the training dataset by throwing away data from the common
classes so that there is an equal amount of data corresponding to each of the classes
under consideration. Note that here, the presumption is not that the model would
not be right for the imbalance data, rather that is is computationally infeasible to
use the imbalanced data. However the data corresponding to the common class is
discarded, simply because typically that is less valuable: the common class may
already be easy to characterise fairly well as it has large amounts of data already.

The result of discarding data, though, is that the distribution in the training scenario
no longer matches the imbalanced test scenario. However it is this imbalanced
scenario that the model will be used for. Hence some adjustment needs to be made
to account for the deliberate bias that is introduced. The graphical model for
imbalanced data is shown in Figure 5 along with a two class example.

Figure 5: Imbalanced Data: imbalanced data is sample selection bias with a de-
signed known bias that is dependent on only the class label. Data from more
common classes is more likely to be rejected in the training set in order to balance
out the number of cases of each class.
In the conditional modelling case, dataset shift due to re-balancing imbalanced data
is just the sample selection bias problem with a known selection bias (as the selection
bias was by design not by constraint or accident). In other words, we have selected
proportionally more of one class of data than another precisely for no reason other
than the class of the data. Variations on this theme can also be seen in certain types
of stratified random surveys where particular strata are oversampled because they
are expected to have a disproportionate effect on the statistics of interest, and so
need a larger sample to increase the accuracy with which their effect is measured.

In a target-conditioned model (of the form P (x|y)P (y)), dataset shift due to im-
balanced data is just prior probability shift with a known shift. This is very simple
to adjust for as only P (y) needs to be changed. This simplicity can mean that
some people choose generative models over conditional models for imbalanced data
problems. Because the imbalance is decoupled from the modelling it is transparent
that the imbalance itself will not affect the learnt model.
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In a classification problem, the output of a conditional model is typically viewed
as a probability distribution over class membership. The difficulty is that these
probability distributions were obtained on training data that was biased in favour
of rare classes compared to the test distribution. Hence the output predictions need
to be weighted by the reciprocal of the known bias and renormalised in order to
get the correct predictive probabilities. In theory these renormalised probabilities
should be used in the likelihood and hence in any error function being optimised.

In practice it is not uncommon for the required reweighting to be ignored, either
through naivety, or due to the fact that the performance of the resulting classifier
appears to be better. This is enlightening as it illustrates the importance of not
simply focusing on the probabilistic model without also considering the decision
theoretic implications. By incorporating a utility or loss function a number of things
can become apparent. First, predictive performance on the rare classes is often more
important than that on common classes. For example in emergency prediction, we
prefer to sacrifice a number of false positives for the benefit of another true positive.
By ignoring the reweighting, the practitioner is saying that the bias introduced by
the balancing matches the relative importance of false positives and true positives.
Furthermore introduction of a suitable loss function can reduce the problem where a
classifier puts all the modelling effort into improving the many probabilities that are
already nearly certain at the sacrifice of the small number of cases associated with
the rarer classes. Most classifiers share a number of parameters between predictors
of the rare and common classes. It is easy for the optimisation of those parameters
to be swamped by the process of improving the probability of the prediction of the
common classes at the expense of any accuracy on the rare classes. However the
difference between a probability of 0.99 and 0.9 may not make any difference to
what we do with the classifier and so actually makes no difference to the real results
obtained by using the classifier, if predictive probabilities are actually going to be
ignored in practice.

Once again the literature on imbalanced data is significant, and there is little chance
of doing the field great justice in this small space. In [5] the authors give an overview
of the content of a number of workshops in this area, and the papers referenced pro-
vide an interesting overview of the field. One paper [13] from the AAAI workshops
looks at a number of different strategies for Learning from Imbalanced Datasets.
SMOTE [4] is a more recent approach that has received some attention. In [1] the
authors look at the issue of imbalanced data specifically in the context of support
vector machines, and an earlier paper [30] also focusses on support vector machines
and considers the issue of data imbalance while discussing the balance between sen-
sitivity and specificity. In the context of linear program boosting, the paper [17]
considers the implications of imbalanced data, and tests this on a text classification
problem. As costs and probabilities are intimately linked, the paper [32] discusses
how to jointly deal with these unknowns. The fact that adjusting class probabilities
does make a practical difference can be found in [15]. Further useful analysis of the
general problem can be found in [13].

9 Domain Shift

In life, the meaning of numbers can change. Inflation reduces the value of money.
Lighting changes can effect the appearance of a particular colour or the meaning
of a position can change dependent on the current frame of reference. Furthermore
there is often the possibility of changes in measurement units. All of these can cause
dataset shift. We call this particular form of dataset shift domain shift. This term is
borrowed from linguistics, where it refers to changes in the domain of discourse. The
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same entity can be referred to in different ways in different domains of discourse:
for example, in one context metres might be an obvious unit of measurement, and
in another inches may be more appropriate.

Domain shift is characterized by the fact that the measurement system, or method of
description, can change. One way to understand this is to postulate some underlying
unchanging latent representation of the covariate space. We denote a latent variable
in this space by x0. Such a variable could, for example, be a value in yen indexed
adjusted to a fixed date. The predictor variable y is dependent on this latent x0.
The difficulty is that we never observe x0. We only observe some map x = f(x0)
into the observable space. And that map can change between training and test
scenarios.

Modelling for domain shift involves estimating the map between representations
using the distributional information. A good example of this is estimating gamma
correction for photographs. Gamma correction is a specific parametric nonlinear
map of pixel intensities. Given two unregistered photographs of a similar scene
from different cameras, the appearance may be different due to the camera gamma
calibration or due to postprocessing. By optimising the parameter to best match the
pixel distributions we can obtain a gamma correction such that the two photographs
are using the same representation. A more common scenario is that a single camera
moves from a well lit to a badly lit region. In this context, gamma correction
is correction for changes due to lighting - an estimate of the gamma correction
needed to match some idealized pixel distribution can be computed. Another form
of explicit density shift include estimating doppler shift from diffuse sources.

Figure 6: Domain Shift: The observed covariates x are transformed from some
idealised covariates x0 via some transformation F , which is allowed to vary between
datasets. The target distribution P (y|x0) is unchanged between test an training
datasets, but of course the distribution P (y|x0) does change if F changes.

10 Source Component Shift

Source Component Shift may be the most common form of dataset shift. In the
most general sense it simply states that the observed data is made up from data
from a number of different sources, each with their own characteristics, and the
proportions of those sources can vary between training and test scenarios.

Source component shift is ubiquitous: a particular product is produced in a number
of factories, but the proportions sourced from each factory varies dependent on a
retailer’s supply chain; voting expectations vary depending on type of work, and
different places in a country have different distributions of jobs; a major furniture
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store wants to analyse advertising effectiveness amongst a number of concurrent
advertising streams, but the effectiveness of each is likely to vary with demographic
proportions; the nature of network traffic on a university’s computer system varies
with time of year due to the fact that different student groups are present or absent
at different times.

It would seem likely that most of the prediction problems that are the subject of
study or analysis involve at least one of:

• Samples that could come from one of a number of sub-populations, between
which the quantity to be predicted may vary.

• Samples chosen are subject to factors that are not fully controlled for, and
that could change in different scenarios.

• Targets are aggregate values averaged over a potentially varying population.

Each of these provides a different potential form of source component shift. The
three cases correspond to mixture component shift, factor component shift and mix-
ing component shift respectively. These three cases will be elaborated further.

The causal graphical model for source component shift is illustrated in Figure 7. In
all cases of source component shift there is some changing environment that jointly
affects the values of the samples that are drawn. This may sound indistinguishable
from sample selection bias, and indeed these two forms of dataset shift are closely
related. However with source component shift the causal model states that the
change is a change in the causes. In sample selection bias, the change is a change in
the measurement process. This distinction is subtle but important from a modelling
point of view. At this stage it is worth considering the three different cases of source
component shift.

Figure 7: Source component shift. A number of different sources of data are repre-
sented in the dataset, each with its own characteristics. Here S denotes the source
proportions and these can vary between test and training scenarios. In mixture
component shift, these sources are mixed together in the observed data, resulting
in two or more confounded components.

Mixture Component Shift In mixture component shift, the data consists di-
rectly of samples of (x,y) values that come from a number of different
sources. However for each datum the actual source (which we denote by s)
is unknown. Unsurprisingly these different sources occur in different pro-
portions P (s), and are also likely to be responsible for different ranges of
values for (x,y): the distribution P (y,x|s) is conditionally dependent on
s. Typically, it is presumed that the effects of the sources P (y,x|s) are the
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same in all situations, but that the proportions of the different sources vary
between training and test scenarios. This distinction is a natural extension
to prior probability shift, where now the shift in prior probabilities is in a
latent space rather than in the space of the target attributes.

Factor Component Shift Here the data is dependent on a number of factors that
influence the probability, where each factor is decomposable into a form
and a strength. For concreteness sake, a common form of factor model
decomposes P (x,y) as

P (x,y) =
1
Z

exp

(∑
k

αkΦk(x,y)

)
(18)

for form exponents Φk(x,y) and strength exponents αk. Factor component
shift occurs when the form of the factors remains the same, but the strength
of the factors changes between training and test scenario.

Mixing Component Shift In mixing component shift, the scenario is the same
as mixture component shift, but where the measurement is an aggregate:
consider sampling whole functions independently from many IID mixture
component shift models. Then under a mixing component shift model, the
observation at x is now an average of the observations at x for each of
those samples. The probability of obtaining an x is as before. Presuming
the applicability of a central limit theorem, the model can then be written
as

P (y|x) =
1
Z

exp
(
(y − µ(x))Σ−1(x)(y − µ(x)))

)
(19)

where the mean µ(x) =
∑
s P (s|x)µs and the covariance Σ =

∑
s P (s|x)Σs

are given by combining the means µs and covariances Σs of the different
components s, weighted by their probability of contribution at point x
(usually called the responsibility).

Although all three of these are examples of source component shift, the treatment
each requires is slightly different. The real issue is being able to distinguish the
different sources and their likely contributions in the test setting. The ease or
otherwise with which this can be done will depend to a significant extent on the
situation, and on how much prior knowledge about the form of the sources there
is. It is noteworthy that, at least in mixture component shift, the easier it is to
distinguish the sources, the less relevant it is to model the shift: sources that do not
overlap in x space are easier to distinguish, but also mean that there is no mixing
at any given location to confound the prediction.

It is possible to reinterpret sample selection bias in terms of source component shift
if we view the different rejection rates as relating to different sources of data. By
setting

Pte(s) ∝
∫
dxdyP (x,y|P (v = 1|x,y) = s) (20)

P (x,y|s) ∝ P (x,y|P (v = 1|x,y) = s) (21)

Ptr(s) ∝ s
∫
dxdyP (x,y|P (v = 1|x,y) = s) (22)

we can convert a sample selection bias model into a source component shift model.
In words, the source s is used to represent how likely the rejection would be, and
hence each source generates regions of x,y space that have equiprobable selection
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probabilities under the sample selection bias problem. At least from this particular
map between the domains, the relationship is not very natural, and hence from
a generative point of view the general source component shift and general sample
selection bias scenarios are best considered to be different from one another.

Figure 8: Sample selection bias (left) and source component shift (right) are related.
The sources are equated to regions of (x,y) space with equiprobable sample rejection
probabilities under the sample selection bias model. Then the proportions for these
sources vary between training and test situations. Here x and y are the covariates
and targets respectively, s denotes the different sources, and v denotes the sample
selection variable.

11 Gaussian Process Methods for Dataset Shift

Gaussian processes have proven their capabilities for nonlinear regression and clas-
sification problems. But how can they be used in the context of dataset shift? In
this section, we consider how Gaussian process methods can be adapted for mixture
component shift.

11.1 Mixture Component Shift Model

In mixture component shift, there are a number of possible components to the
model. We will describe here a two source problem, where the covariate distribution
for each source is described as a mixture model (a mixture of Gaussians will be used).
The model takes the following form

• The distribution of the training data and test data are denoted Ptr and Pte

respectively, and are unknown in general.

• Source 1 consists of M1 mixture distributions for the covariates, where
mixture t is denoted P1t(x). Each of the components is associated2 with
regression model P1(y|x).

• Source 2 consists of M2 mixture distributions for the covariates, where
mixture t is denoted P2t(x). Each of the components is associated with the
regression model P2(y|x).

2If a component i is associated with a regression model j, this means that any datum x
generated from the mixture component i, will also have a corresponding y generated from
the associated regression model Pj(y|x).
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• The training and test data distributions take the following form:

Ptr(x) =
M1∑
t=1

β1γ
D
1tP1t(x) +

M2∑
t=1

β2γ
D
2tP2t(x) and Pte(x) =

M1∑
t=1

γT1tP1t(x)

(23)

Here β1 and β2 are parameters for the proportions of the two sources in the training
data, γD1t are the relative proportions of each mixture from source 1 in the training
data, and γD2t are the relative proportions of each mixture from source 2 in the
training data. Finally γT1t are the proportions of each mixture from source 1 in the
test data. Once again, D and T denote the training and test datasets respectively.
Note that source 2 does not occur in the test dataset. All these parameters are
presumed unknown. In general we will assume the mixtures are Gaussian, when
the form N(x; m,K) will be used to denote the Gaussian distribution function of
x, with mean m and covariance K.

For Gaussian process models for P1(y|x) and P2(y|x), with mixture parameters
collected as Ω, and the mixing proportions collected as γ and β we have the full
probabilistic model

P ({yµ,xµ|µ ∈ D}, {xν |ν ∈ T}|β,Ω) =
∑

{sµ},{tµ}

∏
µ∈D

P (sµ|β)

P (tµ|γ, sµ)Psµtµ(xµ|Ωtµ)Psµ(yµ|xµ)
∏
ν∈T

P (tν |γ)P1tν (xν |Ω) (24)

where sµ denotes the source, and tµ denotes the mixture component. In words this
model says

• For each item in the training set:
– Decide which source generated this datum.
– Decide which of the mixtures associated with this source generated the

covariates.
– Sample the covariates from the relevant mixture.
– Sample the target from the Gaussian process (conditioned on the co-

variates) associated with this source.
• For each item in the test set:

– Decide which of the mixtures from source 1 generated the covariates
(source 2 is not represented in the test data).

– Generate the covariates from that mixture.

11.2 Learning and Inference

The primary computational issue in learning and inference in this model is the diffi-
culty of summing over all the allocations of data points to mixture components. For
Gaussian processes, this computation is harder than in most parametric models as
we cannot expect to be able to do standard Expectation Maximisation. Expectation
Maximisation algorithms involve iterative computation of responsibilities P (sµ) for
each data point µ and then a maximum likelihood parameter estimation for the
parameters given the responsibilities. However as Gaussian processes are nonpara-
metric, the distribution is not independent of the allocation. Hence whether one
point is allocated to one mixture or not will immediately effect the distribution over
all other mixtures.
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Here, a variational approximation is proposed, which enables a variational Expec-
tation Maximisation procedure to be used. The approximation takes the form of
an intermediate approximating Gaussian process for each mixture component and
factorised responsibilities.

For simplicity, we will assume that the target is a scalar value: we are interested in
regression. The issues of generalisation to multidimensional targets are the same as
in standard Gaussian process models. Furthermore for ease of notations the targets
for all of the N data points yµ are collected into a vector y = (y1, y2, . . . yN )T . The
same is done for all other relevant scalar quantities such as the indicators s etc.
The quantities f1 and f2 denote the collections of values of each noise-free Gaussian
process at all the points {xµ}, and noise σ2.

The Gaussian process mixture can be written as

P (y|{xµ}) =
∑
s

∫
df1 df2P (f1, f2, s,y|{xµ}) (25)

where

P (f1, f2, s,y|{xµ}) = P (f1|{xµ})P (f2|{xµ})×∏
µ

1√
2πσ2

exp
(
− 1

2σ2

[
sµ(yµ − fµ)2 + (1− sµ)(yµ − fµ)2

])
. (26)

Note P (f1|{xµ}) and P (f2|{xµ}) are simply the prior Gaussian process regressors
for the two sources.

By using a variational approximation of the form Q(f1)Q(f2)
∏
µQ(sµ) and itera-

tively reducing the KL divergence KL(Q||P ) we obtain the following approximation
procedure for an iterative solution of the covariate shift model. Here αµst is used
to denote the responsibility of mixture t of source s for point µ in the training set.
The term αµs =

∑
t α

µ
st is the responsibility of source s for the point µ.

• Perform a standard Gaussian mixture model Expectation Maximisation to
initialise the responsibilities αµs for each of the two sources.

• Iterate:

– Compute the pseudo-variances σ2/αµs for each point and each source.
– Build the covariance C1 for source 1 from the covariance of the Gaus-

sian process, and an additive pseudo-noise given by a matrix with the
pseudo-variances for source 1 down the diagonal.

– Do the same for source 2 to obtain C2.
– Compute the mean predictions (f∗1 )µ and (f∗2 )µ at points {xµ} for

Gaussian processes with training covariances C1, and C2, and predic-
tion covariances given by the original covariance functions.

– Compute the parameter updates for the Gaussian processes using the
usual hyper-parameter optimisations, and the updates for the various
mixture components using:

mst =

∑
µ∈(D,T ) α

µ
stx

µ∑
µ∈(D,T ) α

µ
st

, Kst =

∑
µ∈(D,T ) α

µ
st(xµ −mst)(xµ −mst)T∑

µ∈(D,T ) α
µ
st

(27)
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– Compute the new responsibilities for each mixture, each source and
each data point using:

αµst =
βsγ

D
stPst(x

µ|Ω)P (yµ|(f∗s )µ, σ2)∑
s,t βsγ

D
stPst(xµ|Ω)P (yµ|(f∗s )µ, σ2)

and αν1t =
γT1tP1t(xµ|Ω)∑
t γ

T
1tP1t(xµ|Ω)

(28)

βs =
1
|D|

∑
µ∈D,t

αµst , γDst =
1
|D|

∑
µ∈D

αµst
βs

, γT1t =
1
|T |

∑
ν∈T

αν1t (29)

where

P (yµ|(f∗s )µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(yµ − (f∗s )µ)2

)
. (30)

• Predict the result on the test data using the Gaussian process prediction
with the covariance between data points given by C1 and covariance be-
tween test and data given by the usual covariance function.

See [28] for more details of this approach to Gaussian process mixtures. Intuitively,
this process increases the noise term on data that are poorly explained by one of
the mixtures. A datum with an increased noise term will have less influence on
the overall Gaussian process regressor that is learnt. This model is related to a
mixture of experts model [12, 14], but where there is a coupling of the regression
function between different mixtures. and the covariate density itself is also modelled.
A similar model was developed in [27], but only for linear regressors, and single
Gaussian components per regressor. This model has the usual deficits associated
with mixture models, including local minima issues, and the difficulties in deciding
on a suitable number of mixtures. The infinite mixture of Gaussian process experts
[18] is another mixture of experts model, but one that uses Gaussian processes and
does not suffer from model size selection issues. However it too does not have the
distribution in covariate space (although this could be added to the model without
major difficulties). The main issues of adapting this for use here are that of having
to resort to Markov Chain Monte-Carlo methods rather than variational methods,
and incorporating the match to the test dataset. These are surmountable issues. In
the current context, Bayesian Information Criterion methods can be used [23] for
selection of the number of mixtures, but it may not always work well as it is both
approximate and a heuristic for latent variable problems. One other consequence
of the model selection issue is that that this implementation of the model may well
perform more poorly than a straight Gaussian process in cases of no dataset shift.
This issue is discussed more generally in the next section.

12 Shift or No Shift?

One big issue in all types of dataset shift is determining whether there is, in fact,
any type of shift at all. It is possible that using a modelling method which can
account for covariate shift may produce worse results than a standard model on
data for which no shift occurs. This is first because introducing the possibility
of shift allows for a large scope of possible representations that waters down the
more concrete (but rigid) assumptions that presuming no shift makes. Second, the
various methods used in modelling covariate shift may have their own deficiencies
(such as local minima) that mean that they do not properly include the no-shift
case: for a maximum likelihood solution may prefer to improve the likelihood by
utilising the freedom of the dataset shift model to overfit, even if presuming no shift
would generalise better.
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At this point, there are some real practicalities that should outweigh theoretical
niceties. It may be interesting to consider how to determine whether covariate shift
occurs on the basis of the training covariates, training targets and test covariates
alone. It may also be useful in making a choice about a limited number of models
to consider. However in many realistic scenarios (the main exceptions being single
future prediction cases3), a practitioner would be negligent not to check a model in
the actual environment it is being developed for before rolling out the use of the
model. There must come a stage at which some test targets are obtained, and at
which some assessment is done on the basis of those. Furthermore even a few test
targets provide a large amount of information regarding dataset shift, in the same
way that semi-supervised learning can provide major benefits over unsupervised
learning. It would also seem peculiar if a no-shift model was not one of the small
basket of models considered at this stage, unless a particular form of dataset shift
was guaranteed a priori. The major improvements available from a semi-supervised
approach in the test domain should never be neglected: targets in the test domain
are very valuable information.

13 Dataset Shift and Transfer Learning

Dataset shift and transfer learning are very related. Transfer Learning considers
the issue of how information can be taken from a number of only partially related
training scenarios and used to provide better prediction in one of those scenarios
than would be obtained from that scenario alone. Hence dataset shift consists of the
case where there are only two scenarios, and one of those scenarios has no training
targets. Multi-task learning is also related. In multi-task learning the response for a
given input on a variety of tasks is obtained, and information between tasks is used
to aid prediction. Multi-task learning can be thought of a special case of transfer
learning where there is some commonality in training covariates between tasks, and
where the covariates have the same meaning across scenarios (hence domain shift
is precluded).

There is recent work on utilising Gaussian processes for multi-task learning [3].
Unlike the methods developed here, this approach relies on having target data for
all scenarios to help in relating them. Many approaches to document analysis (e.g.
Latent Dirichlet Allocation [2] and many related techniques) are in fact methods for
mixture component shift, applied to unsupervised problems in more general multi-
dataset scenarios. The major advantage of having multiple datasets is that it is
possible to characterise the differences between the datasets.

14 Conclusions

Modelling Dataset Shift is a challenging problem, but one with significant real world
consequence. The failures that arise from ignoring the possibility of dataset shift
(e.g. sample selection bias) have been known for a long time. Furthermore models
that work well in static scenarios (such as the use of a conditional model) can fail
in situations of shift. By characterising the different forms of dataset shift, we can
begin to get a handle on the ways the data can be expected to change. Though
sample selection bias and imbalanced data have been studied for many decades as
subjects in their own right, some common forms of shift, such as source component
shift and domain shift may also be worthy of further explicit study. Hopefully, by

3As an example, a pollster predicting election results has no recourse to the voting
patterns of the population as a whole until it is too late.
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relating the different types of shift, more general methods will become available
that can cope with a number of different forms of shift at the same time. Such
methods may help automate the process of prediction even in the case of changing
environments. The aim is to develop methods that are robust to, and automatically
accommodate for dataset shift.

One big question that should be considered is whether it is important to study
dataset shift in its own right, or whether there is more to be gained by the general
study of methods for learning transfer that could be directly applied to dataset
shift. Though the basket of approaches in the two fields may well be similar, there
are methods that will require either some test targets, or multiple training domains
to work, both of which may be unavailable in a standard dataset shift problem.
One thing is certain though, study of dataset shift and transfer learning cannot be
done in isolation of one another, and in a world of data abundance, it may well be
worth asking whether a scenario with a single training dataset as well as a single
unlabelled test dataset is really the best way of expressing a given problem.
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