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Abstract. Hopfield networks are commonly trained by one of two algo-
rithms. The simplest of these is the Hebb rule, which has a low absolute
capacity of n/(21Inn), where n is the total number of neurons. This ca-
pacity can be increased to n by using the pseudo-inverse rule.

However, capacity is not the only consideration. It is important for rules
to be local (the weight of a synapse depends ony on information available
to the two neurons it connects), incremental (learning a new pattern can
be done knowing only the old weight matrix and not the actual patterns
stored) and immediate (the learning process is not a limit process). The
Hebbian rule is all of these, but the pseudo-inverse is never incremental,
and local only if not immediate. The question addressed by this paper
is, ‘Can the capacity of the Hebbian rule be increased without losing
locality, incrementality or immediacy?’

Here a new algorithm is proposed. This algorithm is local, immediate and
incremental. In addition it has an absolute capacity significantly higher
than that of the Hebbian method: n/v/21n n.

In this paper the new learning rule is introduced, and a heuristic calcu-
lation of the absolute capacity of the learning algorithm is given. Sim-
ulations show that this calculation does indeed provide a good measure
of the capacity for finite network sizes. Comparisons are made between
the Hebb rule and this new learning rule.

1 Introduction

Attractor networks such as Hopfield [4] networks are used as autoassociative con-
tent addressable memories. The aim of such networks is to retrieve a previously
learnt pattern from an example which is similar to, or a noisy version of, one of
the previously presented patterns. To do this the network associates each ele-
ment of a pattern with a binary neuron. These neurons are fully connected, and
are updated asynchronously and in parallel. They are initialised with an input
pattern, and the network activations converge to the closest learnt pattern.

In order to perform in the way described, the network must have a learning
algorithm which sets the connection weights between all pairs of neurons so that
it can perform this task.

These learning rules can have a number of characteristics. Firstly a rule can
be local. If the update of a particular connection depends only on information
available to the neurons on either side of the connection, then the rule is said
to be local. Locality is important, because it provides a natural parallelism to



the learning rule, which, when combined with the local update dynamics, make
a Hopfield network a truly parallel machine.

Secondly a rule can be incremental. If the learning process can modify an old
network configuration to memorise a new pattern, without needing to refer to
any of the previously learnt patterns, then an algorithm is called incremental.
Clearly incrementality makes the Hopfield network adaptive, and therefore more
suitable for changing environments or real time situations.

Thirdly a rule can either perform an immediate update of the network con-
figuration, or can be a limit process. The former makes for faster learning.

Lastly and most importantly a learning algorithm has a capacity. This is
some measure of how many patterns can be stored in a network of a given
size. More specifically, in this paper we consider the absolute capacity [6] of the
network. This is given by the asymptotic ratio of the number of patterns that
can be stored without error to the number of neurons, as the network size tends
to infinity.

Capacity is not just important because it allows more efficient information
storage. Because the update time is at least proportional to the number of neu-
rons, higher capacity also allows faster processing times.

1.1 Different learning rules

The most common, and indeed the simplest, learning rule for Hopfield networks
is called the Hebb rule. The Hebb rule is local, incremental and immediate, but
has an absolute capacity of n/(21Inn) [6].

To increase the capacity of the network, the pseudo-inverse learning rule can
be used. This has a capacity of n [5], but does not have the functionality of
the Hebb rule. It is not incremental, and in its most common form, is not local
either. It 1s possible to create a pseudo-inverse weight matrix by a local method,
but only as a limit process rather than with immediate learning [3, 2].

Another way to increase the capacity to n/v/2Inn is through the use of non-
monotonic continuous neurons [7]. However this increases the computational
and storage burden because the response function of each neuron, as well as the
weight matrix, can change, and neuron activations can take a whole range of
values, rather than just binary ones.

It is therefore important to look for new learning methods which increase the
capacity of the network from that of Hebbian learning, but without sacrificing
important functionality, such as locality, incrementality, or immediacy.

This paper introduces a learning rule which keeps this full functionality, and
increases the capacity of the network to n/v/2Inn, a significant improvement on
that of Hebbian learning.

2 Framework

This section outlines the important concepts used in this paper.



A Hopfield network can be defined by the coupled difference equations

oi(t+1) = sgn Z wijo(t) | fori=1,2,....n
j=1 g

where ¢;(t) = £1 is the state of neuron ¢ after the ¢th update, and W = w;; is
the weight matrix given by the learning rule, and is, in all cases we will consider,
symmetric. The network is initialised with a pattern S; by setting o;(0) = S;,
and the time evolution of the network will quickly settle into an equilibrium.

For a useful learning rule this point will be the learnt pattern which is closest
(suitably defined) to the pattern the network was initialised with, and so the aim
of a learning rule is to set up the weight matrix so that the patterns to be learnt
are attractors of the system.

2.1 Characteristics of a learning rule

The characteristics which have been called locality, incrementality and immedi-
acy have already been mentioned. Here these concepts are made more precise.

In what follows v counts the patterns (denoted £¥) to be learnt. W denotes
the state of the weight matrix after the 1...vth patterns have been learnt but
before the (v + 1)th pattern has been introduced.

An incremental learning rule is any where W" is a function only of W¥~!
and &7.

A local learning rule has w;;(s) dependent only on &/, ;, wik(s — 1)&} and
wjg(s — 1)&}, where p = 1,2,...,v, k = 1,2,...,n. Here s counts through the
steps in the evolution of the weight matrix W.

An immediate learning process takes a finite number of steps to obtain W".
Any process which is not immediate is called a limit process. Note that a workable
weight matrix can be obtained by truncating the limit process, but even so, most
limit processes are slower at obtaining a weight matrix than immediate ones.

The three learning rules used in this paper are given by

Definition1 Hebbian learning rule. The Hebbian learning rule is given by
0 ] v v—1 1 Ve
wijZOVz,j and wy; = wy; +55i5j
Definition 2 Pseudo-inverse learning rule. The pseudo inverse is given by
v l N v —INvuep
wz’j—nZZ@(Q ) 5j
v=1pu=1

where ) = %22:1 &r¢,, and m is the total number of patterns with m < n.
It can be seen from the form of these definitions that the Hebbian rule is local,
incremental and immediate, but that the pseudo-inverse is neither local nor
incremental, because it involves calculating an inverse.



Definition3 The new learning rule. The weight matrix of an attractor neu-
ral network 1s said to follow the new learning rule if it obeys

A v v—= 1 Vv 1 viv 1 v v

where hfy = ki j wfk_lé’,‘j 1s a form of local field at neuron 7, and &# is the
new pattern to be learnt.

Once again it 1s clear from the form of the above that the new learning rule
is local, incremental and immediate.

3 The capacity: Signal to noise analysis

For a particular pattern £ to be a fixed point of the system, we require that
Z;zl i & Wij&7 > 0 for all i < n. After expanding out the new learning rule
this gives the condition that

m n m r—1 m n
(_1)7‘—1
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t=1
where the ([T5_, >°,. >y, ) notation isused torepresent >°_ 37 37 >T ...>0  >C
m is the number of patterns stored, S(ai,as,...,ar;b) = R(ai,as,...,a,) —
"H;ZR(al, day ..., ap,b), and

1if dp such that a1 > ... >ap < apy1 < ... < ar
R(ai,as,...,a,) = and a; £ a; Vi # j
0 otherwise
lifa; #aj foralli,j<r
0 otherwise

T(ay,as,...,ar) :{

The N} is called the noise at neuron ¢ for the recall of memory v. If N} < —1
then the pattern £ is unstable at neuron 7 and is therefore recalled incorrectly.

In order to make any estimate of the capacity of this rule something must be
known about the patterns that are to be stored. Here the patterns are assumed
to be random in the usual way [6] The &, are taken to be random variables
with ¢ = +1 and P(¢ = +1) = % The variables are assumed to be mutually

independent for all (k, ).

Definition4 Absolute Capacity. Suppose m(n) random patterns are stored
in the network size n. If in the limit n — oo the probability that all the patterns
are stable is 1, and m(n) is the largest asymptotic relationship for which this
occurs then m(n) is the absolute capacity of the network.



Though the noise term might look very complicated, it is in fact just a sum
of many +1 variables. Furthermore it can be shown that

2
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Note that for all r = 1, S = 2/n?, effectively eliminating order (m/n) noise.

At this point we make the natural, but unproven assumption that the noise is
Gaussian, being a sum of many variables, which, although not independent, have
a somewhat ’sparse’ dependence. In this case the probability that a particular
bit of a particular pattern is unstable is given by

P(NY < —1) = %Jr %erf (-ﬁ) — \/%exp (—%) (3)

2
as ¢ — 0. Here 02 = E|N}|? < TE T

Now if we choose m(n) = n/(v/2Inn) such that 2(n? — m(n)?)/m(n)? =
4Inn + 1, then we know from (3) that

€
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and so mnP (N} < —1) < mnpmn — 0.
Finally, because this is true for all m x n values of i, v, the simple lemma

Lemmab. Let Any be an event. Let A, = U;_; Angx. Then lim P(A,) = 0 if
hHl Supn—>oo ZZ:l P(A”k) - 0

shows that with m(n) = n/(v/2Inn), the probability that any of the bits of any
of the patterns are unstable tends to zero as the network gets larger, and hence
the capacity is n/(v21Inn).

Simulations of the networks were performed, and the capacity results for the
new learning rule were compared with those of the Hebb rule (Figure 1). The
graph shows that the theory gives good approximations of the capacity for finite
size networks.

4 Other considerations and Conclusions

Little has been said in this paper about basins of attraction and spurious states.
These are important issues. Initial work in looking at these indicate that the
number of spurious states and the size of the basins of attraction are comparable
to that of the Hebb rule. This should not be seen as a surprise. In the new
learning rule, the introduction of the attractors into the system still follows
the Hebb formulation. The additional terms of the learning rule serve only to
remove some of the lower order noise brought about by the interaction of different
attractors, and hence increase the number of patterns that can be stored.



Capacities of The New Rule and the Hebb Rule:Simulation v Theory
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Fig. 1. Capacity of new learning rule v Hebb

This improvement of capacity for the Hopfield network is very significant.
At network sizes of a million neurons, the absolute capacity of the new learning
rule is five times that of the Hebb rule, increasing both storage and speed.

In this paper we have focussed only on absolute capacity. The Hebb rule
has a relative capacity (where imperfect recall is allowed) of 0.14n [1]. Although
it may be possible to calculate a relative capacity for the new learning rule, it
should be noted that even at sizes of a million neurons, the absolute capacity of
the new learning rule is greater than the relative capacity of the Hebb.
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