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Abstract

We examine the problem of learning a proba-
bilistic model for melody directly from musical
sequences belonging to the same genre. This
is a challenging task as one needs to capture
not only the rich temporal structure evident in
music, but also the complex statistical depen-
dencies among different music components.
To address this problem we introduce the
Variable-gram Topic Model, which couples
the latent topic formalism with a systematic
model for contextual information. We evalu-
ate the model on next-step prediction. Addi-
tionally, we present a novel way of model eval-
uation, where we directly compare model sam-
ples with data sequences using the Maximum
Mean Discrepancy of string kernels, to assess
how close is the model distribution to the data
distribution. We show that the model has the
highest performance under both evaluation
measures when compared to LDA, the Topic
Bigram and related non-topic models.

1. Introduction

Modelling the real-world complexity of music is an in-
teresting problem for machine learning. In Western
music, pieces are typically composed according to a
system of musical organization, rendering musical struc-
ture as one of the fundamentals of music. Nevertheless,
characterizing this structure is particularly difficult, as
it depends not only on the realization of several musical
elements, such as scale, rhythm and meter, but also on
the relation of these elements both within single time
frames and across time. This results in an infinite num-
ber of possible variations, even within pieces from the
same musical genre, which are typically built according
to a single musical form.

To tackle the problem of melody modelling we propose
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the Variable-gram Topic model which employs a Dirich-
let Variable-Length Markov Model (Dirichlet-VMM)
(Spiliopoulou & Storkey, 2011) for the parametrisation
of the topic distributions over words. The Dirichlet-
VMM models the temporal structure by learning con-
texts of variable length that are indicative of the future.
At the same time, the latent topics represent different
music regimes, thus allowing us to model the different
styles, tonalities and dynamics that occur in music.
The model does not make any assumptions explicit
to music, but it is particularly suitable in the music
context, as it is able to model temporal dependencies of
considerable complexity without enforcing a stationar-
ity assumption for the data. Fach sequence is modelled
as a mixture of latent components (topics), and each
component models Markov dependencies of different
order according to the statistics of the data that are
assigned to it.

To evaluate the performance of the model we perform
a comparative analysis with related models, using two
metrics. The first one is the average next-step predic-
tion log-likelihood of test sequences under each model.
The second is the Maximum Mean Discrepancy (MMD)
(Gretton et al., 2006) of string kernels computed be-
tween model samples and test-data sequences. In both
evaluations, we find that using topics improves per-
formance, but it does not overcome the need for a
systematic temporal model. The Variable-gram topic
model, which couples these two strategies has the high-
est performance under both evaluation objectives.

The contributions of this paper are: (a) We intro-
duce the Variable-gram Topic model, which extends
the topic modelling methodology by considering condi-
tional distributions that model contextual information
of considerable complexity. (b) We introduce a novel
way of evaluating generative models for discrete data.
This employs the MMD of string kernels to directly
compare model samples with data sequences.

2. Background

A number of machine learning and statistical ap-
proaches have been suggested for music related prob-
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lems. Here we discuss methods that take as input
discrete music sequences and attempt to model the
melodic structure. Lavrenko & Pickens (2003) propose
Markov Random Fields (MRFs) for modelling poly-
phonic music. The model is very general, but in order
to remain tractable much information is discarded, thus
making it less suitable for realistic music. Weiland et al.
(2005) propose a Hierarchical Hidden Markov Model
(HHMM) for pitch. The model has three internal states
that are predefined according to the structure of the mu-
sic genre examined. Eck & Lapalme (2008) propose an
LSTM Recurrent Neural Network for modelling melody.
The network is conditioned on the chord and certain
previous time-steps, chosen according to the metrical
boundaries. Paiement et al. (2009) provide an interest-
ing approach that incorporates musical knowldege in
the melody modelling task. They define a graphical
model for melodies given chords, rhythms and a se-
quence of Narmour features, which are extracted from
an Input-Output HMM conditioned on the rhythm.

A very successful line of research examines the transfer
of methodologies from the fields of statistical language
modelling and text compression to the modelling of mu-
sic. Dubnov et al. (2003) propose two dictionary-based
prediction methods, Incremental Parsing (IP) and Pre-
diction Suffix Trees (PSTs), for modelling melodies
with a Variable-Length Markov model (VMM). De-
spite its fairly simple nature the VMM is able to cap-
ture both large and small order Markov dependencies
and achieves impressive musical generations. Begleiter
et al. (2004) study six different alogrithms for training a
VMM. These differ in the way they handle the counting
of occurences, the smoothing of unobserved events and
the variable-length modelling. Spiliopoulou & Storkey
(2011) propose a Bayesian formulation of the VMM,
the Dirichlet-VMM, for the problem of melody mod-
elling. The model is shown to significantly outperform
a VMM trained using the PST algorithm. Finally, an
interesting application of dictionary-based predictors
in the music context is presented in Pearce & Wiggins
(2004). They describe a multiple viewpoint system
comprising a cross-product of Prediction by Partial
Match (PPM) models.

3. The Variable-gram Topic Model

In this section we introduce the Variable-Gram Topic
model, which we later apply to melodic sequences. In
the context of music modelling, documents correspond
to music pieces and words correspond to notes. The
Variable-Gram Topic model extends Latent Dirichlet
Allocation (LDA) by employing the Dirichlet Variable-
Length Markov model (Dirichlet-VMM) (Spiliopoulou
& Storkey, 2011) for the parametrisation of the topic

data: D=[11001001]
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Figure 1. An example Dirichlet-VMM tree for a binary se-
quence. Contexts 01 and 11 are only observed once and
thus are not included in the tree. Note that for readability,
contexts in this figure are denoted in chronological order.

distributions over words. We begin with a description
of the Dirichlet-VMM.

3.1. The Dirichlet-VMM

The Dirichlet-VMM is a Bayesian hierarchical model for
discrete sequential data defined over a finite alphabet.
It models the conditional probability distribution of the
next symbol given a context, where the length of the
context varies according to what we actually observe.
Long contexts that occur frequently in the data are
used during prediction, while for infrequent ones, their
shorter counterparts are used.

Similarly to a VMM, the model is represented by a
suffix tree that stores contexts as paths starting at the
root node; the deeper a node in the tree the longer
the corresponding context. The depth of the tree is
upper bounded by L, the maximum allowed length for
a context. The tree is not complete; only contexts that
occur frequently enough in the data and convey useful
information for predicting the next symbol are stored.
The Probabilistic Suffix Tree algorithm for constructing
a VMM tree is detailed in Ron et al. (1994).

In contrast to the VMM, parameter estimation in the
Dirichlet-VMM is driven by Bayesian inference. Let
w denote a symbol from the alphabet and j index the
nodes in the tree, with ¢; = wy...we, ¢ € {1,...,L},
denoting the context of node j. Each node j is identified
by the conditional probability distribution of the next
symbol given context c;, which we denote by ¢;; =
P(w =1i|c;). In the Dirichlet-VMM this distribution is
modelled through a Dirichlet prior centred at the parent
node, ¢; ~ Dirichlet(8¢p,(;)), Where 3 denotes the
concentration parameter of the Dirichlet distribution,
pa(j) denotes the parent of node j, with corresponding
context Cpa(;) = wi...we—1, and we have used the
bold notation ¢; to denote the parameter vector ¢. ;.
An example Dirichlet-VMM is depicted in Figure 1.

Due to the conjugacy of the Dirichlet distribution
to the multinomial, posterior inference in this model
is exact. Let ¢;; = P(w = ilcj, D) denote the es-
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Figure 2. Graphical models: (a) LDA without the plate
notation for words (b) Variable-gram Topic model.

timate for ¢;; after observing data D. We have
(}bj ~ Dirichlet(ﬂE[épa(j)] + N.j;), where N.j; denotes
the counts associated with context j in the data and
E[] denotes expectation.

During prediction only the leaf nodes are used. Given
an observed context, we start at the root node and
follow the path labelled by successively older symbols
from the context, until we reach a leaf node, from which
we read the predictive distribution. The hierarchical
construction of the Dirichlet-VMM allows us to main-
tain information coming from the shorter contexts into
the predictive probabilities of the longer ones. It is
related to the hierarchical Dirichlet language model
(Mackay & Peto, 1995), where instead of a single fixed
order we now consider n-gram statistics of variable or-
der, by successively tying the measure of the Dirichlet
prior to the statistics of lower orders.

3.2. Introducing Latent Topics

The graphical model for the Variable-gram Topic model
is depicted in Figure 2(b). Similarly to LDA, each
document is modelled as a mixture of latent topics
and the latent topics are shared among documents.
Each document d has a distribution over the K la-
tent topics parametrised by 84, where 84 is defined
as 0y = P(z = k|d). On the other hand, each topic
is now represented by a Dirichlet-VMM; instead of a
single probability distribution over words, we now have
a set of conditional probability distributions encoding
contextual information of variable order. This differ-
ence from LDA is apparent in Figure 2, where we can
see that in the variable-gram topic model, word w; has
directed connections from both z; and the L previously
observed words. These latter connections are defined in
terms of the Dirichlet-VMM, which means that depend-
ing on the context we observe, we can have ¢ active
connections, with ¢ € {1,...,L}. If we consider only
first order (¢ = L = 1) dependencies, instead of variable
order ones, then we retrieve the Bigram Topic model
of Wallach (2006).

Algorithm 1 Generative Process for the Variable-
gram Topic model.
Input: Dirichlet-VMM T, K, ©, ®
for each document d in the corpus w do
for each time-step t,t € {1,...,Ty4} in d do
Choose a topic z; 4 ~ Multinomial(6,)
Choose a word wy 4 ~ Multinomial(¢

th,d 7Zt,d)
end for
end for

Let j index the leaf nodes of a Dirichlet-VMM, i.e.
the contexts that can be used during prediction, and
Cw,= Wi—1 ... wi—yg, L € {1,..., L} denote the context
of word w;. The parameters ¢, characterising word
generation within topic &k are defined by ¢;;,, = P(w; =
i|cw, = j,2t = k). This results in a tensor ® with
KC(W —1) free parameters, where K is the number
of latent topics, C' the number of leaf nodes and W
the number of words in the vocabulary. For simplicity
we assume that the Dirichlet-VMM has the same tree
structure for all topics.

According to the generative process in Alogrithm 1, the
joint probability of a corpus w and a set of correspond-
ing latent topic assignments z under a variable-gram
topic model with parameters ® and O is

P(w,2|®,0) = [[[] P(z.al00) P(widlde,, , =)
d t
=IO o
tJ

where N;); is the number of times word ¢ has been
assigned to topic k& when preceded by context j, Nyq is
the number of times topic k has occured in document
d and t indexes word positions (time-steps).

The prior over the ® parameters is the same as in LDA

P(®|an) = | | Dirichlet(84|am) . (2)
d
In this work, we set n to the uniform distribution.

The prior over the ® parameters is now defined in terms
of the Dirichlet-VMM. More specifically, let m;; =
@Ppa(j),k» denote the measure for the Dirichlet prior of
node j in the k-th Dirichlet-VMM. We have

P(®@|B{m;}) = [ T] Dirichlet(@; [ Bmy) - (3)

k

This prior produces a hierarchical Dirichlet-VMM tree
for each topic k. The parameters for the children of
a node are coupled through the shared Dirichlet prior.
Hence, within a topic, information regarding prediction
is shared among all contexts, through the mutual prior
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at the root node. In this work we set the prior for the
root node of each topic, mg x, to a uniform distribution.

3.3. Inference & Learning

The total probability of the model given a set of hyper-
parameters is

P(w,z,®,0|an, f{m, ;}) = H P(04]lam)x
d

[1P(@,4l8m; 0 TTPGralbn) Pl e, 0 )- (4)
t

k.j

From (4) we can see that, as with LDA, given am, the
0, parameters are independent from each other and the
same for all the ¢, ;. Similarly, the ¢; ; parameters
are independent from each other given 8 and {m; ;}.
Using these independence relations and the conjugacy
of the Dirichlet to the multinomial, we can integrate
over the model parameters, ® and ®, to obtain a closed
form solution for the joint probability of a corpus w
and a set of corresponding latent topic assignments z,
given a set of hyperparemeters

P(w,zlom, f{m;;}) =
1;[ 1:[ [LTGmye) TNt h)

D(o) I T(Npja + anyg)
e ' )

F(Nd + a)

Using (5) we can define a collapsed Gibbs sampling
procedure that will allow us to infer the latent topic
assignments. The procedure starts by randomly initial-
ising the latent topic assignments, and then sequentially
sampling each latent variable z; given the current val-
ues of all other latent variables z_;, the data w and a
set of hyperparameters {an, f{m; ;}}. At every Gibbs
step we sample z; according to

Pz = klz—;,w,am, f{m, ;. }) x
{Nijjrt—¢ + Bmi i {Nkjat—t + any
{Njk}—t+ B {Na} -+ +a
After the Gibbs sampling procedure has converged,
we can approximate the posterior distribution of the

model parameters, ® and @, through the predictive
distributions

(6)

Nyjq + ang
P(0 = — 7
( k|d|w7z’an) Nd"‘@ ( )
Nijje + Bk
P ) = Upk LR 8
(¢74|J,k w7zaﬁ{m];k¢}) vak + 6 ( )

4. Experiments

In the following section we evaluate the Variable-gram
Topic model by comparing its performance with Latent

Dirichlet Allocation, the Bigram Topic model and the
Dirichlet-VMM. First, we consider a next-step predic-
tion task, which is commonly used for evaluation in the
music context (Lavrenko & Pickens, 2003; Paiement
et al., 2009; Begleiter et al., 2004).

Although predictive log-likelihood is indicative of model
performance, it only examines certain aspects of what
a model has learnt. More specifically, log-likelihood
decreases sharply if a model is overfitting, but it does
not penalise as heavily a model that assigns lots of its
probability mass to improbable configurations. This
is problematic, as in unsupervised learning of complex
data it is common for a model to underfit.

To address this issue, we introduce a novel framework
for model evaluation which employs string kernels and
the Maximum Mean Discrepancy (Gretton et al., 2006)
to compare samples from the model with test sequences.
This evaluation is indicative of underfitting, as models
that spread their probability mass outside the space
of possible configurations will generate samples that
do not resemble data sequences. Therefore, this frame-
work is complementary to the log-likelihood evaluation
and allows us to further understand the generative
properties of a model.

Finally, we provide a qualitative evaluation of the
Variable-gram Topic model, where we analyse the in-
ferred latent topic assignments and the learned pa-
rameters and show that the model captures musically
meaningful properties, such as the key and the tempo.

4.1. Experimental Setup

For our experiments we use a dataset of MIDI files
comprising 264 Sottish and Irish reels from the Not-
tingham Folk Music Database. Roughly half of the
pieces are in the G major scale and the rest in the
D major and all the pieces have 4/4 meter. We use
the representation of Spiliopoulou & Storkey (2011),
where time is discretized in eighth notes and the MIDI
values are mapped to a 26-multinomial variable, with
24 values representing pitch (C4-B5) and 2 special val-
ues representing “silence” and “continuation”. This
representation is depicted in Figure 3.

To set the hyperparameters, a and [, of the topic
models we use a 10-fold cross-validation procedure and
perform grid search over the product space of the values
{0.01,1,5, 10,50, 100}.

We present results for topic models with 5, 10 and
50 topics. Additionally, for the Variable-gram Topic
model and the Dirichlet-VMM, we present results using
two tree structures, obtained by changing the threshold
that the relative frequency of a context must exceed,
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Figure 3. Data Representation: Time is discretized in eighth
note intervals. At each time-step, pitch is represented by
a 1-of-26 dimensional vector. Red arrows: a (G4 quarter
note (lasts for two eighths) is represented by G4 followed by
‘continuation’. Blue Arrow: a G4 eighth note is represented
by a single G4. Notes outside the C'4-B5 interval are
truncated to the nearest octave.

in order to include the context in the tree. The first
tree is relatively shallow (threshold: le — 03) and is
referred to as .Sh, whereas the second tree is deeper
(threshold: le — 04) and is referred to by .De.

4.2. Next-Step Prediction Task

Given a test corpus of melodic sequences, we want to
evaluate how well a model performs in next-step predic-
tion. The average next-step prediction log-likelihood of
a test corpus wyes; under a model M with parameters
0 is given by:

1 N 1 Ta
E = N ; Fd glog P(’ll},g7d|’Ll}17d7 e ,’wtfl,d). (9)

In the Dirichlet-VMM we can compute (9) exactly.
For the topic models, computing the prediction log-
likelihood requires a summation over the latent topic
assignments for the test set, which is intractable. We
approximate (9) through a sampling procedure, where
we initialize 8, at the prior and at each time-step we
sample s topics from our current estimate of 6,4, use
these samples to compute the log-likelihood of time-
step ¢ and subsequently update 8, with the mean of
the posterior distribution from each sample. Addi-
tionally we present results from two different update
schemes for the distributions over words. In the first
approach, denoted by S.1, we do not update the word
distribution during testing, that is the information
from the observed part of a test piece is only used to
update the 6; parameters. In the second approach,
denoted by S.2, after each time-step we also update
the distributions over words, by adding to ¢;; of

Table 1. Average next-step prediction log-likelihood of the
testdata under different models.

STATIONARY MODELS L(M,0;wiest)

EMPMARG —2.2216

DIR-BIGRAM —1.9153

DIR-VMM.SH —1.6043

DIr-VMM.DE —1.5605

Toric MODELS (S.1) K=5 K=10 K=50
LDA —2.0484 —2.0355 —2.0282
BiGrRAM —1.7658 —1.7558 —1.7071
VAR-GRAM.SH —1.5680 —1.5653 —1.5349
VAR-GRAM.DE -1.5390 -1.5427 -1.5219
Toric MODELS (S.2) K =25 K=10 K=50
LDA —2.0480 —2.0351 —2.0280
BiGrAaM —1.7575 —1.7433 —1.6966
VAR-GRAM.SH —1.1724 -0.9827 -0.9553
VAR-GRAM.DE -1.0354 —0.9850 —1.0194

the observed word-context, counts proportional to the
posterior probability of topic k.

Table 1 shows the average next-step prediction log-
likelihood of the testdata under different models. Note
that this is computed using only the first half of the
test sequences, as in this genre the second half is typi-
cally exact repetition of the first half. The empirical
marginal distribution, denoted as EmpMarg, is used
as a simple baseline. It is the Maximum Likelihood
model if we do not include any temporal dependen-
cies or topic components. The Dir-Bigram model is a
Dirichlet-VMM with L = 1 and is included as a second
baseline that models first order dependencies. The first
thing we can note is that introducing latent topics is
useful for modelling melody, as all the topic models
perform better than their non-topic counterparts and
performance improves as we use more topics. This is
true for both update schemes S.1 and S.2.

A second observation is that modelling temporal de-
pendencies is very important in melody. The Dirichlet-
VMM, which has no latent topics, but is able to capture
both large and small order Markov dependencies, per-
forms better than the Topic Bigram and LDA, which
model only first order and no temporal dependencies
respectively. Similarly, the Dirichlet-Bigram performs
better than LDA. Therefore, the predictive informa-
tion of the context is higher than that of the latent
topics. This is also evident by the fact that perfor-
mance improves as we consider longer contexts, with
the Variable-gram topic models being consistently bet-
ter than all other models for both update schemes S.1
and S.2.

Finally, the aspect of novelty in music is particularly
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apparent when we compare the performance of the
Variable-gram topic models using update scheme S.1
and S.2. We can see that performance improves signifi-
cantly when the distributions over notes are updated
during prediction, which shows that information com-
ing from the test piece is highly predictive of the future.
This signifies that longer contexts can have different
meaning across music pieces, which is expected as each
piece is a unique realisation of a music idea.

4.3. Maximum Mean Discrepancy of String
Kernels

In this section, we present a new approach for evaluat-
ing model generation. We employ string kernels and
the Maximum Mean Discrepancy (Gretton et al., 2006)
to estimate the distance between the model distribu-
tion, @, and the true “theoretical” data distribution, P,
based on finite samples drawn i.i.d. from each. Given
the two populations — model samples and test data —
we first compute a similarity score between each pair
of sequences, which is proportional to the number of
matching subsequences. Then we quantify the distance
between the two populations by comparing the intra-
population similarity scores to the inter-population
scores. A small distance indicates that a model gener-
ates many of the different substructures that occur in
the data. The method cannot assess the generalisation
properties of a model, but it identifies underfitting, by
measuring how close are model generations to data
sequences. Therefore, it provides a complementary
evaluation of model performance.

The Maximum Mean Discrepancy (MMD) is a distance
metric between probability distribution embeddings on
a Reproducing Kernel Hilbert Space (RKHS). Given a
set of observed data sequences X := {x1,X2,...,Xm}
drawn i.i.d. from P and a set of sampled sequences
X’ = {x],%5,...,x),} drawn i.i.d. from @, an unbiased
empirical estimate of the squared population MMD can
be computed as

1 m m
MMDZ[fvan/]:i K(Xi,X‘)+
m(m-1) ;; J
1 n n , , 2 m n )
) ;;K(x“xj)—m;;f((xi,xj), (10)

where F is a RKHS and K(z,2') = (¢(x), ¢(2')) F is
a positive definite kernel defined as the inner product
between feature mappings ¢(z) € F.

Since the MMD is defined on a RKHS, we can use
the kernel trick to compare pairs of melodic sequences.
String kernels naturally lend themselves to this prob-
lem, as they define a measure of similarity between
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Figure 4. Estimated squared MMD between test sequences
and model samples using the (4, 1) mismatch kernel. Colour
describes the temporal structure in a model. Groups de-
scribe models with different numbers of topics. EmpMarg;:
the empirical marginal distribution of the training data.
Train: the train sequences. (*): The models are sampled
conditional on the topic allocations (see text for details).

discrete structures by comparing the set of matching
substructures. We use the mismatch kernel (Leslie
et al., 2004), K m)(x,x"), which for a pair of sequences
x and x’ computes the shared occurences of k-length
subsequences that have at most m mismatches. This
kernel has been successfully used for biological sequence
classification (Leslie et al., 2004) and NLP tasks (Teo
& Vishwanathan, 2006).

In order to avoid spurious correlations due to the “con-
tinuation” value, we map the melodic sequences to a
25-multinomial representation, where “continuation” is
substituted by the observed pitch. Additionally, we
report results using the normalized mismatch kernels
/
Rty (%)) = Km0 x) (11)
\/K(k,m) (X’ X) \/K(k,m) (X/a X/)

Figure 4 shows the mean and standard deviation of the
estimated squared MMD between test sequences and
model samples from different models, computed using
the (4,1) mismatch kernel. Note that for the topic
models we generate samples in two ways. In the first
case, the topics are sampled from the prior which at
each step is updated with the sampled topic. In the sec-
ond case, which is denoted with the (*) symbol, we first
run Gibbs sampling on the test sequences to get a set
of topic allocations and then we perform sampling from
the model given the topic allocations. This restricts
the sampling noise, but is not directly comparable with
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Figure 5. (4,1) mismatch kernels computed between 10 test
sequences (rows 1-10) and 10 model samples (rows 11-20).
(a) Uniform(26) (b) Dirichlet-VMM.De (c) Topic Bigram.50
(d) Topic Var-gram.De.50 (e) Topic Var-gram.De.50-Given
topics (f) Traindata

the non-topic models, as it uses information from the
test pieces captured by the latent topic allocations.

Again, we use the empirical marginal distribution as
a baseline. Additionally, the MMD between test se-
quences and train sequences, denoted as Train, is given
as a lower bound on what can be achieved. All models
outperform the empirical marginal, but none of them
has learned P completely.

Although the objective function for this evaluation is
very different to the one for the next-step prediction
task, the comparative performance of the models un-
der this metric is analogous. The first thing we can
observe is that the topic component is useful. Similar
to the results from the prediction task, the Variable-
gram Topic model always outperforms the equivalent
Dirichlet-VMM and performs better as we increase the
number of topics. A second important observation is
that introducing topics does not overcome the need
for a systematic temporal model. The variable-gram
models are consistently and notably better than the
equivalent bigrams, and the variable-gram with the
deeper tree structure (De) tends to outperform the
shallower one (Sh). This indicates that a good model
for temporal dependencies is important for both pre-
diction and generation. Experiments using the (5, 1)
and (6,1) mismatch kernels produce equivalent results.

Figure 5 shows the (4, 1) mismatch kernels between 10
test sequences and 10 samples from different models.
We can observe that due to the lack of any tempo-
ral structure, samples from the Uniform distribution
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Figure 6. Scatter plot of the number of times each latent
topic is allocated in pieces from the key of G (x-axis) and
in pieces from the key of D (y-axis), after Gibbs sampling
in the training data has converged.

have very low similarity scores, both with each other
and with test sequences. On the other hand, samples
from the Dirichlet-VMM are comparatively much more
similar to each other than to test sequences. Samples
from the topic models are less similar to each other,
as different samples have different distributions over
topics, thus allowing for more unique generations, while
still capturing the statistical dependencies across pieces.
Another interesting observation is that when given the
topic allocations for the test pieces (e), the samples
have significantly more shared occurences with the
corresponding test pieces, suggesting that the latent
topic is highly informative of the observed note. This
is depicted by the high values in the diagonal of the
data-samples submatrix (top-right) in subfigure (e).

4.4. Qualitative evaluation

An attractive property of Topic models when applied
in NLP tasks is that they discover meaningful topics.
In this section we examine aspects of the latent topic
allocations and the inferred parameters of the Variable-
gram topic model and analyse them with respect to
musical features. Figure 6 shows a scatter plot of
the number of times each topic has been allocated
in pieces from the key of G (x-axis) and in pieces
from the key of D (y-axis) after the Gibbs sampler
has converged. The model has learned to distinguish
the key, as topic allocations in this plot are negatively
correlated, which means that each topic tends to be
allocated in pieces from a single key. Figure 7 shows
the conditional distributions over notes for 2 topics
that are used in pieces from the key of D for 4 different
contexts. The first context is the empty string, i.e. the
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Figure 7. Conditional distributions over notes for 2 topics
that are mostly assigned in pieces from the key of D. Each
distribution is conditioned on a different context. Model:
Variable-gram.De.T'sg.

distribution of the root node of the Dirichlet-VMM
tree corresponding to each of the topics. The second
context is note E5 and the other two are note E5
preceded by D5 and F#5 repsectively. We can see that
the conditional distributions are successively sharper.
Topic 4 tends to prefer “continuation”, thus modelling
slower parts of the melody, whereas topic 1 assigns
lower probability to “continuation”, especially given the
longer contexts. At the same time we can observe that,
depending on the context, the topics prefer different
notes. For instance, if there is an upward movement in
the context, D5 followed by E5 (subfigure (c)), Topic 4
wants to continue going upwards, i.e. high probability
on F#5, and vice versa for a downward movement

(subfigure (d)).
5. Discussion

We presented the Variable-gram Topic model, which
couples the latent topic formalism with an expressive
model of contextual information. Using two evaluation
objectives we showed that the model outperforms a
number of related methods for the problem of modelling
melodic sequences. Both evaluations revealed that in
this setting although latent topics improve performance,
they do not overcome the need for a systematic tempo-
ral model.

Additionally we presented a novel way of evaluating
model performance, where we used the MMD of string
kernels computed between data sequences and model
samples to directly evaluate the model distribution.
This evaluation gave the same comparative results as
next-step prediction, although it addresses different
aspects of model behaviour. Looking at the mismatch

kernels in Figure 5 we can visualize the progress that
a model has made and “how much” of the structure is
still not captured.

Finally it is interesting to investigate the aspect of
novelty in music. Pearce & Wiggins (2004) moves
in this direction by using the cross product of two
models, one constructed using the train data and the
other constructed sequentially as we observe the test
sequence. Although this is applicable in a prediction
task, it is not easy to actualize for generation, as the
only available information comes from what the model
has previously sampled.
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