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Abstract. Modelling the real world complexity of music is a challenge for ma-
chine learning. We address the task of modeling melodic sequences from the same
music genre. We perform a comparative analysis of two probabilistic models; a
Dirichlet Variable Length Markov Model (Dirichlet-VMM) and a Time Convo-
lutional Restricted Boltzmann Machine (TC-RBM). We show that the TC-RBM
learns descriptive music features, such as underlying chords and typical melody
transitions and dynamics. We assess the models for future prediction and compare
their performance to a VMM, which is the current state of the art in melody gener-
ation. We show that both models perform significantly better than the VMM, with
the Dirichlet-VMM marginally outperforming the TC-RBM. Finally, we evaluate
the short order statistics of the models, using the Kullback-Leibler divergence
between test sequences and model samples, and show that our proposed methods
match the statistics of the music genre significantly better than the VMM.

Keywords: melody modeling, music feature extraction, time convolutional restricted
Boltzmann machine, variable length Markov model, Dirichlet prior

1 Introduction

In this paper we are interested in learning a generative model for melody directly from
musical sequences. This task is challenging for machine learning methods. Repetition
of musical phrases, which is essential for Western music, can occur in almost arbitrary
points in time and with different degrees of variation. Furthermore, although pieces
from the same genre are built using the same structural principles, the statistical rela-
tions among and within melodies from different pieces are highly complex, as melody
depends on several different components, such as scale, rhythm and meter, which in
many cases interdepend on each other.

Capturing the statistical regularities within a musical genre is a first step towards re-
alistic music generation. Additionally, identifying and representing these dependencies
in an unsupervised manner is particularly desirable, as descriptive features of the un-
derlying structure of music can not only help in the analysis and synthesis of music, but
also enhance the performance on a variety of musical tasks such as genre classification
and music retrieval.

In this work we consider two methods for the problem of melody modeling; a
Time Convolutional Restricted Boltzmann Machine (TC-RBM) and a Dirichlet Vari-
able Length Markov Model (Dirichlet-VMM). The first is an adaptation of the Convo-
lutional RBM (Lee et al., 2009) for modeling sequential data and is motivated by the
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ability of RBM type models to extract high quality latent features from the input space.
The second one is a non-latent variable model and is a novel form of VMM, the latter
one being regarded as state of the art in melody generation (Paiement, 2008).

Our purpose is to answer the following questions. Are these probabilistic models
able to learn the inherent structure in melodic sequences and generate samples that
respect the statistics of the music genre? What aspects of the musical stucture can each
of the models learn? Can melodies be decomposed into a set of musical features in the
same way that images can be decomposed into sets of edges and documents into sets of
topics?

We train the models on a set of traditional reel tunes and perform a comparative
analysis of these with a standard VMM. We show that the TC-RBM learns descriptive
music features, such as underlying chordal structure, musical motifs and transforma-
tions of those. We assess the models on future prediction and find that our proposed
methods perform significantly better than the standard VMM and are comparable to
each other, with the Dirichlet-VMM having slightly higher log-likelihood. Likewise,
we evaluate the short order statistics of model samples, using the Kullback-Leibler di-
vergence, and show that samples from the TC-RBM and the Dirichlet-VMM match the
statistics of the test data significantly better than samples from the VMM.

2 Related Work

In many cases, the difficulties associated with modeling music have been dealt with
by incorporating domain knowledge in the models. In this line of research, Paiement
(2008) proposes modeling different aspects of music, such as chord progressions, rhythm
and melody, using graphical models and Input-Output HMMs. The structure of the mod-
els and the data representations used are based on musical theory. Additionally, Wei-
land et al. (2005) propose a Hierarchical Hidden Markov Model (HHMM) for pitch.
The HHMM is structurally simple and its internal states are pre-defined with respect to
music assumptions.

A different course of research examines more general machine learning methods,
which are able to automatically capture complex relations in sequential data, without in-
troducing much prior knowledge. In this paper we are taking this approach and consider
models that do not make assumptions explicit to music.

Lavrenko and Pickens (2003) propose Markov Random Fields (MRFs) for modeling
polyphonic music. In order for the MRF to remain tractable, much information needs
to be discarded, thus making the model less suitable for realistic music.

Eck and Schmidhuber (2002) show that a Long-Short Term Memory (LSTM) Re-
current Neural Network can successfully model long-term structure in two simple mu-
sical tasks. In Eck and Lapalme (2008) the LSTM is extended to include meter informa-
tion. The output of the network is conditioned on the current chord and specific previous
time-steps, chosen according to the metrical boundaries. Trained on a set of traditional
Irish reels the LSTM is shown to generate pieces that respect the reel style.

Finally, Dubnov et al. (2003) propose Incremental Parsing (IP) and Prediction Suffix
Trees (PSTs) for modeling melodies, the latter one being the data structure used to
represent VMMs. Both algorithms train simple dictionary-based predictors that parse
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music into a lexicon of phrases or motifs. Paiement (2008) argues that despite their
simple nature, these two models generate impressive musical results when sampled and
can be considered state of the art in melody generation.

3 Preliminaries

3.1 Musical Motifs

Before describing the models, we explain the concept of motifs and their importance to
music modeling, as we believe it is useful in understanding the types of structures that
the VMM and the TC-RBM are trying to capture.

In Western Music, the smallest building block of a piece is called a motif. Motifs
typically comprise three, four or more notes and most pieces can be expressed as a com-
bination of different motifs and their transformations. Frequent transformations include
replacement, splitting and merging of notes, and typically respect the metrical bound-
aries of a piece. We believe that successful capturing of music motifs can be very useful
when modeling melodies, as specific motifs and their transformations are highly likely
to be repeated within a piece, as well as among pieces from the same musical form.

3.2 Variable Length Markov Model

The VMM (Ron et al., 1994) is a statistical model for discrete sequential data and
has been shown to generate state of the art musical results when modeling melodies
(Dubnov et al., 2003). Its advantage to a standard Markov Model (n-gram) is that the
order of the former is not fixed, but instead depends on the observed context.

A VMM is represented by a Prediction Suffix Tree. The edges of the tree are labeled
with symbols from the alphabet, in this case the different music notes. Each node defines
the conditional probability distribution of the next symbol given the context we acquire
by concatenating all the edge symbols from the root to the node 1. The tree has depth
L, but is not complete2, thus giving rise to contexts that are shorter than L but are still
used for prediction.

To learn the tree, we start from a single root node labeled by the empty string and
‘grow’ the tree using a breadth-first search for contexts that satisfy the following crite-
ria:
• The length of a context is upper bounded by a fixed length L
• The frequency counts of a context exceed a fixed threshold cmin
• The ratio of the conditional probability distribution defined at a node with that de-

fined at its parent node exceeds a fixed threshold εmin
The resulting tree comprises contexts corresponding to musical phrases that ap-

pear frequently in the data and convey significant information about the value of future
time-steps. After the tree is built, the empirical conditional probability distributions are

1 Note that during prediction only the conditional probability distributions defined at the leaf
nodes are used.

2 The complete tree would represent a standard Markov Model of order L.
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smoothed by adding a constant probability γmin to all symbols in the alphabet and
renormalizing.

3.3 Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) is a two-layer undirected graphical model
with a set of visible and a set of hidden units. It is a special, bipartite form of the
Boltzmann Machine (Ackley et al., 1985), in which the interaction terms are restricted
to units from different layers. The joint distribution over observed and latent variables
is defined through an energy function, which assigns a scalar energy to every possible
configuration of the variables:

P (v,h|θ) =
1

Z (θ)
exp (−E (v,h|θ)) , (1)

where Z(θ) is a normalizing constant called the partition function and θ is used to
denote the set of model parameters.

In its original form, an RBM has binary, logistic units in both layers3 and its energy
function is defined as:

E (v,h|θ) = −cTv − bTh− vTWh, (2)

where c and b are the biases for the visible and hidden units, respectively, and W is the
weight matrix for the interaction terms.

Inference in this model can be performed efficiently using block Gibbs sampling,
as due to the bipartite structure of the model, the conditional distributions of the hidden
units given the visibles and of the visible units given the hiddens factorize.

Maximum Likelihood learning in the RBM is difficult due to the partition function
Z(θ) which is typically intractable4. However, parameter estimation can be performed
using Contrastive Divergence (Hinton, 2002), an objective that approximates the likeli-
hood and has been shown to work well in practice.

4 Models

4.1 Dirichlet-VMM

The VMM is similar to an n-gram model in that its performance is significantly influ-
enced by the smoothing technique used. An alternative to a standard form of variable
length Markov model is a hierarchical model, where each conditional multinomial dis-
tribution in the tree is sampled from a dirichlet Distribution, centered at the sample
multinomial for the parent node. In this model smoothing is performed implicitly by
taking a Bayesian approach and introducing an appropriate prior distribution at each
node while building the tree.

3 However, see for example Welling et al. (2004) on how to define RBMs with real-valued units.
4 Computing the partition function involves a sum over all possible configurations of visible and

hidden units.
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More formally, let m (xt|xt−1, . . . ,xt−τ−1) be defined by

mk = P (xt = k|xt−1, . . . ,xt−τ−1) .

Then we model each conditional distribution as:

P (xt|xt−1, . . . ,xt−τ ) ∼ Dirichlet (αm (xt|xt−1, . . . ,xt−τ−1)) . (3)

This forms a hierarchical tree with the marginal distribution P (xt) as the root node, and
successively more specific conditional distributions as we traverse down the tree. The
intermediate nodes, though identified with particular distribution, are not used directly
to model the data; that is done by the leaf nodes.

Learning this hierarchical distribution involves learning the posterior distributions
at each level of the hierarchy from the data associated with the given node (i.e. the data
that satisfies the conditional distribution).

P (xt|xt−1, . . . ,xt−τ , D) ∼
Dirichlet(αE [m(xt|xt−1, . . . ,xt−τ−1, D)] + c(xt,xt−1, . . . ,xt−τ )), (4)

where the ck(x) function counts the number of occurrences of sequence x in the dataset
where the last element is in state k, and E denotes expectation.

The mean of the posterior Dirichlet at each node is the prior Dirichlet for the data at
the child nodes. Note the top levels of the hierarchy have a large amount of associated
data, but as we progress down the tree the amount of data reduces. In the limit where
there is no data the posterior distribution for that node is just given by the posterior for
the parent node.

This model is directly related to the sequence memoizer (Wood et al., 2009), but
is a finite model using Dirichlet distributions, instead of a Pitman Yor model. Using
Dirichlet distributions makes the inference procedure entirely conjugate and thus no
sampling is required. We call this model a Dirichlet-VMM in this paper.

4.2 Time Convolutional RBM

We propose a Time Convolutional RBM (TC-RBM) as a new way of modeling se-
quential data with an RBM type network. We believe that models based on the RBM
are particularly suitable for capturing the componential structure of music, as they can
learn distributed representations of the input space, decoupling the different factors of
variation into features being “on” or “off”. The TC-RBM is an adaptation of the Con-
volutional RBM for sequences and it is motivated by the successful application of such
models in static image data (Lee et al., 2009; Norouzi et al., 2009).

Previous RBM approaches to sequence modeling use the RBM to model a single
time-step and attempt to capture the temporal relations in the data by introducing dif-
ferent types of directed connections from units in previous time-steps (Taylor et al.,
2007; Sutskever and Hinton, 2007; Taylor and Hinton, 2009). In contrast, the TC-RBM
is a fully undirected network and attempts to capture the structure of music at a motif
level rather than a single time-step.
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Fig. 1. A Time Convolutional RBM with filter size τ = 3. The dashed frame shows the connec-
tions to the hidden units in a single time-step. Each unit receives input from all visible units in a
subsequence of length τ . The model is ‘unrolled’ in time through a weight sharing mechanism.

The TC-RBM is depicted in Fig. 1. Local temporal dependencies are captured by
learning an RBM on visible subsequences of fixed length - instead of single data points.
This allows the hidden units to learn valid configurations for a whole subsequence and
thus capture frequent motifs and their transformations. Longer sequences are modelled
by applying convolution through time. This weight sharing mechanism allows us to
better model boundary effects and provides the model with translation invariance along
time, which is desirable as motifs can appear anywhere in a musical piece.

The energy function of the TC-RBM is defined as:

E (V,H|θ) = −
∑
t

(
cTvt + bTht +

τ−1∑
k=0

vT
t+kWkht

)
, (5)

where V is a visible sequence, H is the hidden configuration for that sequence and τ is
the size of the filter we apply5. The interaction terms are parameterized by the weight
tensor6 W and the unit biases, c and b for visible and hidden units respectively, are the
same for all time-steps.

Similarly to an RBM, the joint probability distribution of the observed and hidden
sequence under the TC-RBM is defined as P (V,H|θ) = exp (−E(V,H|θ)) /Z(θ).

The conditional probability distributions of this model factorize over time and units
and are given by softmax and logistic functions:

P (vi,t = 1|H) =
exp

(
ci +

∑τ−1
k=0 Wi,·,kht−k

)
∑
q

exp

(
cq +

τ−1∑
k=0

Wq,·,kht−k

) , (6)

5 The filter size is the number of visible time-steps that a hidden unit receives input from.
6 Each slice k of the W tensor is the weight matrix for the connections of hidden units at time t

with the visible units at time t+ k.
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P (hj,t = 1|V) =

[
1 + exp

(
−bj −

τ−1∑
k=0

vT
t+kW·,j,k

)]−1

. (7)

Inference can be performed using block Gibbs sampling. The computation of (6)
and (7) can be performed efficiently by convolving along the time dimension the appro-
priate slice of the weight tensor with the hidden and visible sequence respectively. As
in the RBM, learning can be performed using the Contrastive Divergence rule.

5 Experiments

In the following section we want to assess the ability of the models to learn the inherent
structure of melodic sequences belonging to the same genre. An appropriate measure for
this evaluation is the marginal likelihood of the data under each model M , P (D|M) =∫
P (D|θ,M)P (θ|M)dθ. However, computing the marginal likelihood under the TC-

RBM is intractable7 and thus we need to make use of other quantitative measures.
In the music modeling literature, evaluation is primarily based on qualitative anal-

ysis, like listening to model generations. To our knowledge, the only quantitative mea-
sures used so far are next-step prediction accuracy (Paiement, 2008; Lavrenko and Pick-
ens, 2003) and perplexity (Lavrenko and Pickens, 2003). In this work, we broaden this
evaluation framework to consider longer future prediction, instead of only next-step, as
this provides an insight regarding model performance through time.

To make our comparative analysis more rigorous, we also examine the short order
statistics of the models and compare them with the data statistics. To perform this anal-
ysis we compute the Kullback-Leibler divergence between the frequency distribution
of events in test sequences and in model samples, which measures how well the model
statistics match the data, or put differently, how much a model has yet to learn.

Besides the quantitative evaluation, we are also interested in assessing the capabili-
ties of the models to identify and represent the statistical regularities of the data. In the
VMM models, the learned lexicon of phrases determines the frequent musical motifs,
but does not provide any information regarding the underlying structure, as the encoded
patterns are fixed. On the other hand, the TC-RBM learns a distributed representation
of the input space; a set of latent features that are ‘on’ or ‘off’ depending on the input
signal. We demonstrate that these features are music descriptors extracted from the data
and convey information regarding music components such as scale, octaves and chords.

5.1 Data Processing and Representation

In the following experiments we use a dataset comprising 117 traditional reels collected
from the Nottingham Folk Music Database8. Reels are traditional Scottish and Irish
tunes used to accompany dances. All tunes are in the G major scale and have 4/4 meter.

Our representation is depicted in Fig. 2. The components we wish to model are pitch
and duration of the notes in the melody. Duration is modelled implicitly by discretizing

7 Computing the data likelihood P (D|θ,M) involves a sum over all possible configurations of
visible and hidden units.

8 We use the MIDI toolbox (Eerola and Toiviainen, 2004) to read and write MIDI files.
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Fig. 2. Data Representation: Time is discretized in eighth note intervals. At each time-step, pitch
is represented by a 1-of-26 dimensional vector. Red (left) arrows: a G4 quarter note lasts for two
time-steps and is represented by G4 followed by ‘continuation’. Blue (right) arrow: a G4 eighth
note lasts for one time-step and is represented by a single G4.

time in eighth-note intervals. At each time-step, pitch is encoded using a 1-of-m vector.
We use only two octaves,C4-B5, giving rise to a 24-dimensional vector. Values outside
this octave range are trunctated to the nearest octave.

Finally, we augment the 1-of-m vector with two more values. The first one is used to
represent music silence. The second one is used to represent ‘continuation’ of an event
and allows us to keep more accurate information concerning the duration of notes.

5.2 Implementation Details

We trained a VMM, a Dirichlet-VMM and a TC-RBM. To set the parameters cmin,
εmin and γmin of the VMM we applied grid search over the product space of the pa-
rameters and chose the values that maximize the data log-likelihood using leave-one-out
cross validation on the training data. We used the same grid search procedure to set the
parameter α of the Dirichlet prior in the Dirichlet-VMM9.

For the TC-RBM, we used 50 hidden units. We chose the size of the filters to be
8 time-steps, which corresponds to the length of a music bar. For learning the model
we used the following settings: CD-5, 500 epochs, 0.5 learning rate decreasing on a
fixed schedule, 0.0002 weight decay. We additionally used a sparsity term10 in the ob-

9 In the VMM, the maximum length L was set to a very large value (100), which resulted in
the depth of the tree being controlled by the parameter cmin for the frequency counts. The
resulting depth for the optimal tree is 13. In the Dirichlet-VMM, we used a global α parameter
and applied grid search over the product space of cmin, εmin and α.

10 It has been suggested (Lee et al., 2009; Norouzi et al., 2009) that due to the over-complete hid-
den representation of convolutional RBMs, encouraging sparsity is important and can facilitate
learning.
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Fig. 3. Weight filters for 6 different hidden units of the learned TC-RBM. All units prefer notes
from the G major scale to be ‘on’; these notes are explicitly ticked in the y-axis. Filters 1 and 2
respond to similar patterns, but operate in the lower and higher octave respectively. Filters 3 and 4
respond to notes from either theGmaj or theAm chord in alternate time-steps. Filter 5 is highly
selective to a specific motif, whereas filter 6 responds to several configurations of the scale notes.

jective function, which encourages hidden units to be ‘off’. We implemented sparsity
as described in Lee et al. (2008), and set the desired activity level to 0.1.

5.3 Learning Musical Features

In the TC-RBM each hidden unit is connected with all the visible units from eight
subsequent time-steps. This gives rise to a 26×8-dimensional filter for each hidden
unit11.

The filters corresponding to 6 different hidden units from the learned TC-RBM are
depicted in Fig. 3. We can notice that all units prefer visible configurations with notes
from the G major scale12 to be ‘on’, but have various degrees of selectivity and respond
to different subsets of these notes in different positions.

For instance, filter (6) is fairly broad and may respond to several different configura-
tions of notes from the G major scale, whereas filter (5) is highly selective, responding
primarily to the downwards-upwards movement EDCBGAB through the scale and
certain variations of it.

An interesting property of the top two filters is their relation with respect to the
octave. Both units respond to similar music phrases. For instance, both units respond to
11 The filter for hidden unit j is the slice W·,j,· of the weight tensor.
12 Notes from the G major scale: GABCDEF#G
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Fig. 4. Two different visible configurations that frequently turn ‘on’ the hidden unit corresponding
to filter (5) from Figure 3 during sampling. The visible configurations are also depicted in the
musical score. Each configuration contains a different variation of the motif D∗BG, which is
prominent in filter (5).

the motif F#GAB starting at either position 1 or 3. However, the left unit operates in
the lower octave (C4-B4), whereas the right one operates in the higher octave (C5-B5).

Another interesting property is the relation of the filters to the tone chords of the
scale13. In several filters, the prefered subset of notes at each time-step corresponds to
the notes of a tone chord. This property is particularly prominent in filters (3) and (4).
For instance in filter (3), the prefered subset of notes at odd time-steps corresponds to
the notes of the Gmaj chord (GBD), whereas at even time-steps to the notes of the
Am chord (ACE).

In order to better understand how the filters behave, we looked at random visible
configurations that tend to activate a hidden unit during sampling. Figure 4 shows two
such visible configurations for the hidden unit corresponding to filter (5). Although
the two configurations seem fairly different, they both contain the motif D ∗BG in
positions 2 to 5 with either a pass through A or ‘continuation’ of D in position 3.
Filter (5) is highly responsive to this motif, and although time-steps 6 to 8 in the visible
configurations are not highly preferable, the unit is still very likely to turn ‘on’.

Overall, we can see that the learned filters encode familiar musical movements, such
as arpeggios and scales14. However, the interesting and potentially powerful character-
istic of the TC-RBM representation is that it also encodes and groups together many
possible transformations of these movements. Therefore, in contrast to the VMM rep-
resentation, the motifs learned by the TC-RBM are not fixed; the TC-RBM filters group
together musically sound variations of motifs, thus encoding possible note substitutions,
merging and splitting. This is very advantageous when modeling music, given its highly
complex and ingenious nature, and also allows for more genuine music generations.

5.4 Prediction Task

Given an observed test subsequence we want to evaluate how well a model can predict
the following k time-steps. We define the prediction log-likelihood of a test sequenceD

13 These are chords of three, four or five notes built from alternate scale notes of G Major.
14 These can be loosely defined as groups of subsequent scale notes, either going up or going

down.
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under a modelM with parameters θ, as the log probability of the actual future time-step
dt+τ given time-steps d1 up to dt, averaged over all time-steps Tn of the test sequence.
More specifically:

logLτ (θ,M ;D) =
1
Tn

T∑
t

logP (dt+τ |d1, . . . , dt,θ,M) . (8)

We use the empirical marginal distribution15 as a baseline for evaluating model perfor-
mance.

Computing Prediction logL under the VMM and the Dirichlet-VMM. For τ = 1
we can compute (8) exactly under the VMM models. For τ > 1 we need to marginalize
over the future time-steps that are between dt and dt+τ , ie:

P (dt+τ |d1, . . . , dt,θ,M) =
∑

dt+1,...,dt+τ−1

P (dt+1, . . . , dt+τ |d1, . . . , dt,θ,M) . (9)

We approximate this distribution by drawing a number of sampled paths from the
VMM and averaging over the conditional probability distributions defined by these
paths which are given exactly under the VMM:

P (dt+τ |d1, . . . , dt,θ,M) ≈ 1
S

S∑
s=1

P (dt+τ |d1, . . . , dt, d
s
t+1, . . . , d

s
t+τ−1,θ,M). (10)

We use 100 sampled paths in the experiments reported here.

Computing Prediction logL under the TC-RBM. In order to evaluate (8) under the
TC-RBM, we need to marginalize over future visible time-steps that are between dt
and dt+τ for τ > 1 and over the possible configurations of hidden units for time-steps
t to t+τ . To avoid this computation we approximate the predictive distribution using
samples from the model. The sampling procedure is given in Algorithm 1.

In our experiments, we use 100 chains and run 15 Gibbs iterations within each chain.
Overall, we use 500 samples to approximate the predictive distribution, discarding the
first 10 samples from each chain.

Results. Figure 5 shows the log-likelihood of predicting the true succession given an
observed sub-sequence from a test tune under different models. As already mentioned,
our baseline for assessing model performance is the empirical marginal distribution.
The log-likelihood of the test data under the empirical marginal corresponds to the
black curve.

Compared to the empirical marginal distribution, the standard VMM (green x) per-
forms significantly better in predicting the first two future time-steps, only slightly bet-
ter for time-steps 3 and 4 and significantly worse than the empirical marginal after the
5th time-step.
15 The empirical distribution of the training data under the assumption that all time-steps are

iid (independently and identically distributed). This distribution is the best predictor in the
absence of temporal dependencies.
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Algorithm 1 Sampling Procedure for the TC-RBM
Let V be a visible sequence and H a hidden sequence
Initialize V randomly
Set v1...t = dn1...t

While s < numberOfSamples
H ∼ PTC−RBM (H|V,θ) (Equation 7)
V ∼ PTC−RBM (V|H,θ) (Equation 6)
Clamp to context: v1...t = dn1...t

If equilibrium reached
Hs = H
s = s+ 1

end
end
P (dnt+τ |dn1...t,θ,M) = 1

S

X
PTC−RBM (vt+τ |Hs,θ)

Both the Dirichlet-VMM (cyan crosses) and the TC-RBM (blue stars) perform sig-
nificantly better than the standrad VMM in predicting all future time-steps. These two
models have similar performance in the prediction task, with the Dirichlet-VMM out-
performing the TC-RBM for the first two time-steps and their prediction log-likelihood
being almost the same from the 3rd time-step onwards.

We should note that the performance of the TC-RBM in prediction may be com-
promised by the fact that the block Gibbs procedure samples the future sub-sequence
as a whole at each iteration. This means that due to the convolutional structure of the
model, the time-step we are trying to predict receives information not only from the
past, which is clamped to the observed context, but also from the future which is ini-
tialized randomly and can thus drive the samples into different energy basins.

Compared to the empirical marginal distribution, both the Dirichlet-VMM and the
TC-RBM perform better for the first 10 time-steps. The prediction log-likelihood under
the models is initially much higher than the one under the empirical marginal distribu-
tion, but decays as we try to predict further into the future. The models slowly forget the
information upon which they have been conditioned and after the 10th time-step con-
verge to a steady-state distribution, which is slightly worse than the empirical marginal
distribution for prediction.

While long-term prediction is useful for characterizing model behaviour through
time, it is not adequate for evaluating the generative capabilities of the models. For
instance, even if a musical phrase is highly predictable given a certain context, the
models can get bad predictive performance if they are not able to determine the correct
starting time-step for the phrase.

Nevertheless, we can note that in contrast to the standard VMM, our proposed mod-
els converge to the empirical marginal distribution over time and thus are better in
capturing the statistical regularities in the data, which is the first step towards realistic
music generation.
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Fig. 5. Prediction Log-Likelihood under different models plotted as a function of time. The Log-
Likelihood is averaged across 2,000 configurations of context-future observations, randomly se-
lected from the test data.

5.5 Using the Kullback-Leibler divergence to compare statistics

The Kullback-Leibler (KL) divergence is a measure of how different two probability
distributions, P and Q, are. For discrete random variables, it is defined asDKL(P‖Q) =∑
i P (i) log P (i)

Q(i) and shows the average number of extra bits needed to encode events
from a distribution P with a code based on an approximating distribution Q. If the true
distribution that generated the data is P and the model distribution is Q, then the lower
the KL-divergence the better the model matches the data.

To compare model statistics with data statistics, we compute the frequency distri-
bution of events in samples generated by each of the models and in test sequences, and
compute the KL-divergence between the normalized data and model frequencies. More
specifically, let dt denote the observation of a single time-step at time t. Then to com-
pare first-order statistics we estimate the KL-divergence between P (dt) and Q(dt) by
computing:

DKL(Pdata(dt)‖QM (dt)) =
1
N

N∑
n=1

Pdata(dnt ) log
Pdata(dnt )
QM (dnt )

, (11)

where Pdata(dt) is the empirical marginal distribution of data sequences and QM (dt)
is the marginal distribution of samples generated by model M . Similarly, for pairwise
statistics we compute DKL(Pdata(dt, dt+1)‖QM (dt, dt+1)), for third order statistics
DKL(Pdata(dt, dt+1, dt+2)‖QM (dt, dt+1, dt+2)), and so on.

Since the true distribution that generated the data is unknown, we perform a boot-
strapping procedure for the estimation of the KL-divergence. More specifically, we
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Table 1. KL-divergence between data statistics and model statistics. We report the mean and
variance (in the parenthesis) of the KL-divergence for each statistic. These are computed using
50 resamples, obtained by random sampling with replacement from the test dataset.

order 1 order 2 order 3 order 4 order 5 order 6

Trainset 0.032 (1e-4) 0.433 (0.012) 1.351 (0.093) 3.150 (0.197) 5.455 (0.330) 7.985 (0.479)
TC-RBM 0.064 (2e-4) 0.273 (4e-4) 0.872 (0.002) 2.420 (0.047) 5.244 (0.248) 8.584 (0.645)
Dir-VMM 0.045 (3e-4) 0.302 (0.005) 1.158 (0.076) 2.594 (0.172) 4.295 (0.357) 6.462 (0.672)

VMM 0.187 (1e-4) 0.481 (4e-4) 1.331 (0.023) 3.242 (0.114) 5.839 (0.284) 8.772 (0.452)

lag 1 lag 2 lag 3 lag 4 lag 5 lag 6

Trainset 0.228 (0.002) 0.251 (0.003) 0.188 (8e-4) 0.236 (0.003) 0.180 (8e-4) 0.254 (0.001)
TC-RBM 0.229 (6e-4) 0.203 (5e-4) 0.222 (6e-4) 0.201 (5e-4) 0.204 (9e-4) 0.175 (4e-4)
Dir-VMM 0.198 (0.001) 0.175 (0.001) 0.224 (0.001) 0.184 (0.002) 0.215 (0.001) 0.202 (0.001)

VMM 0.476 (2e-4) 0.474 (4e-4) 0.542 (4e-4) 0.477 (6e-4) 0.533 (5e-4) 0.472 (6e-4)

compute the KL-divergence for each statistic 50 times, each time using a different data
resample, obtained by random sampling with replacement from the original test dataset.
In our results, we report the mean and variance of the KL-divergence for each statistic.

The number of possible events grows exponentially with the order we consider,
which makes the statistics for higher-orders less reliable, given that we have a finite test
set. In order to get a better understanding of how the models perform through time, we
additionally consider pairwise statistics with lags, that is statistics of events comprising
two time-steps which are not adjacent in time. For instance for lag l = 1 we consider
the frequencies of events (dt, dt+2), for lag l = 2 we consider (dt, dt+3) and so on.

Results. Table 1 shows the mean and variance of the KL-divergence between the statis-
tics of test sequences and a priori samples for various models. The first row compares
test sequences to train sequences and is used as a reference for interpreting the results.
Looking at the first order statistics we can note that the TC-RBM and the Dirichlet-
VMM have much lower KL-divergence than the VMM, with the Dirichlet-VMM hav-
ing the lowest amongst the models. In fact the KL-divergence for the former two models
is very close to the KL-divergence between test sequences and train sequences, which
indicates that samples generated from these models match the statistics of the test data
well.

For the second, third and fourth order statistics, the TC-RBM has the lowest KL-
divergence, with the Dirichlet-VMM following closely and the VMM lagging behind.
Interestingly, the KL-divergence of these statistics for the TC-RBM and the Dirichlet-
VMM is even lower than the one for the train data. We believe that this stems from
the fact that the models are capturing the underlying structure that characterizes the
whole musical genre, and to some extent ignore the finer structure that characterizes
each individual music piece. This can result in model samples that have higher inter-
and lower intra-piece similarity than a set of real music sequences.

For fifth and sixth order statistics, the KL-divergence for the TC-RBM and the
VMM is close to the KL-divergence for the train data, whereas for the Dirichlet-VMM
is lower. As mentioned earlier, the estimates for higher order statistics are less reliable,
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since the number of possible configurations is exponentially large and thus very difficult
to characterize from a finite set of samples.

Finally, for the pairwise statistics with lags, the KL-divergence for both the TC-
RBM and the Dirichlet-VMM is low, very close to the one for the train data, whereas
for the VMM it is considerably higher. This suggests that our proposed methods respect
the short order statistics of the musical genre and are better than the VMM in capturing
the statistical regularities of the data through time.

6 Discussion

We addressed the problem of learning a generative model for music melody by consid-
ering two probabilistic models, the Dirichlet-VMM and the Time Convolutional RBM.
We showed that the TC-RBM, trained on a dataset of tunes from the same genre, learns
descriptive musical features that can be used to decompose the underlying structure of
the data into musical components such as scale, octave and chord.

We performed a comparative analysis of the two models with the standard VMM,
which, to our knowledge is state of the art in melody generation. We showed that in a
long-term prediction task both models perform significantly better than the VMM and
comparably with each other. The Dirichlet-VMM is a better next-step predictor, which
can be partially accredited to its main strength, that is its ability to use shorter or longer
contexts depending on whether they provide useful information or not.

We evaluated the short order statistics of the models by comparing the Kullback-
Leibler divergence between test sequences and model samples. We demonstrated that
sampled generations from our proposed methods match the statistics of the test se-
quences considerably better than samples from the VMM and respect the genre statis-
tics, as the KL-divergence for the TC-RBM and the Dirichlet-VMM is very close to the
KL-divergence between test and train sequences.

The ability of the TC-RBM to extract descriptive musical features allows us to con-
sider hierarchical approaches for melody generation, which can help modulate the ap-
pearance of features through time. We are currently experimenting with deeper TC-
RBM architectures, where TC-RBMs are stacked on top of one another in a greedy
manner (see Hinton et al. (2006) for the RBM case). Deep models have been shown
to learn hierarchical representations of the input space, where more abstract features
are captured in higher layers, which according to the tonal music theory (Lerdahl and
Jackendoff, 1983) is how music composition should be understood.

Finally, an interesting direction for future research in music modeling involves ex-
ploration of methods that can distinguish between inter- and intra-piece similarity. The
methods examinded in this work can learn the statistical relations within a musical
genre, but are not able to effectively model piece-wise variation. Considering methods
that enable us to sample a prior distribution for each piece, such as topic models, would
be a first step towards this direction.
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