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Abstract

Statistical techniques play a major role in contemporary methods for analyzing mag-
netic resonance imaging (MRI) data. In addition to the central role that classical sta-
tistical methods play in research using MRI, statistical modeling and machine learning
techniques are key to many modern data analysis pipelines. Applications for these tech-
niques cover a broad spectrum of research, including many preclinical and clinical studies,
and in some cases these methods are working their way into widespread routine use.

In this manuscript we describe a software tool called TractoR. (for “Tractography with
R”), a collection of packages for the R language and environment, along with additional
infrastructure for straightforwardly performing common image processing tasks. TractoR
provides general purpose functions for reading, writing and manipulating MR, images, as
well as more specific code for fitting signal models to diffusion MRI data and performing
tractography, a technique for visualizing neural connectivity.

Keywords: magnetic resonance imaging, diffusion, tractography, image processing, machine
learning, R.

1. Introduction

Magnetic resonance imaging (MRI) is a noninvasive medical imaging technique which is used
routinely in hospitals worldwide. By exploiting fundamentally quantum-mechanical charac-
teristics of water molecules in the presence of a strong magnetic field, MRI can recover detailed
images of body tissues at a resolution of around 1 mm. Unlike many other medical imaging
methods, MRI uses no ionizing radiation, and therefore permits repeated scanning.
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tractor Top-level managed directory

tractor/fdt Data, brain mask and DTT maps (Section 4.1)
tractor/fdt.bedpostX Data processed by FSL BEDPOST (Section 4.2)
tractor/fdt.track Tractography output (Section 5)
tractor/camino Files for interoperability with Camino
tractor/objects Binary R objects

Table 1: The layout of a session directory in TractoR version 1.8.0.

MRI is also a very flexible technique. By manipulating the nuclear magnetic resonance signal
from water molecules, a broad variety of tissue contrasts can be obtained. Of particular
interest in this paper is diffusion MRI (dMRI), wherein image intensity at each pixel (or voxel
for 3D images) depends on the local pattern of self-diffusion of water (Le Bihan 2003). Since
elements of body tissue such as cell membranes present obstacles to diffusion, these images
can provide information about microscopic tissue structure; and the orientation of highly
linear structures such as the brain’s white matter can also be inferred.

The development of new MRI analysis techniques is a major area of research, and some of
the ideas generated by this research are filtering through to clinical applications. Statistical
techniques play a very important part in many of these new developments. Currently, MAT-
LAB is probably the most widely-used programming language for the development of new
MRI analysis tools, with the SPM (statistical parametric mapping) package being a notable
example (Friston et al. 2007); but C++, Java and Python are also common choices. Due to its
statistical pedigree and vectorized programming model, R (R Development Core Team 2011)
is a strong candidate for software development in this field.

In this paper we introduce a software package called TractoR (for “Tractography with R”),
which consists of several R packages, along with a simple command line based front-end and
some associated infrastructure for performing common MRI analysis tasks. TractoR is free
software, available from http://code.google.com/p/tractor under the terms of the GNU
General Public License, version 2.

2. Package overview and conventions

The core functionality of TractoR is provided in four R packages. The tractor.base package
provides general functions for reading, writing and manipulating magnetic resonance images;
tractor.session maintains the various image files associated with a particular scan session
or subject, and provides interfaces to third-party software; tractor.nt provides functions for
performing “neighbourhood tractography”; and tractor.utils provides various utility functions,
primarily used by the TractoR. shell interface.

The session abstraction obviates the need for the user to keep track of the locations of large
numbers of files, instead following a convention for simplicity. The general layout in the
current version of TractoR is shown in Table 1, and the tractor.session package provides
accessor functions for obtaining the true path to a particular image, such as the fractional
anisotropy map (located at tractor/fdt/dti_FA). Note that since this is an abstraction, the
layout of session directories may change in a future version of the software.

Classes in TractoR are implemented as lists of functions, defined in a scope in which a set
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of member variables are defined. These variables are not directly accessible externally, but
accessor functions provide access to them. This will be demonstrated explicitly in the next
section.

3. The MriImage class

The core data type used in TractoR is the MriImage. This class is defined in the tractor.base
R package, along with methods for reading and writing objects from and to standard medical
image file types; visualization; and simple image manipulation. This data type consists of an
array of voxel intensity values along with a set of metadata describing the voxel dimensions,
coordinate origin and storage format of the image.

The standard file format used by TractoR to store MriImage objects is the NIfTI-1 format,
a widely-supported standard in medical imaging (http://nifti.nimh.nih.gov/nifti-1).
Reading an image from such a file is simple.

R> library("tractor.base")
R> i <- newMrilmageFromFile(file.path(Sys.getenv("TRACTOR_HOME"), "share",
+ "mni", "brain.nii.gz"))

(Note that this example requires that the full TractoR distribution has been installed, and
that the TRACTOR_HOME environment variable has been correctly set to point to its location
on disk.) This particular image is a standard representation of the brain in Montréal Neu-
rological Institute space (MNI space; see Evans et al. 1994), provided by the International
Consortium for Brain Mapping. Information about the image can be obtained through its
print () method.

R> print (i)

* * x *x INFO: Image source : /usr/local/tractor/share/mni/brain
* % * % INFO: Image dimensions : 91 x 109 x 91 voxels

* * x *x INFO: Coordinate origin: (46,64,37)

* % * * JINFO: Voxel dimensions : 2 x 2 x 2 mm

* * % *x JNFO: Data type : unsigned integer, 8 bits/voxel

* x x x JNFO: Endianness : little

Access to the array of voxel values stored with the image, or specific elements of metadata,
is through a series of accessor functions.

R> d <- i$getData()
R> class(d)

[1] "array"
R> dim(d)

[1] 91 109 91

!TractoR will also support the upcoming NIfTI-2 file format.
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Figure 1: One slice of the standard MNI space brain image, before (left) and after (right)
thresholding at a voxel intensity of 150.

R> i$getOrigin()
[1] 46 64 37

Additional accessor functions for the MriImage class — or, analogously, any other class —
may be obtained by calling the R names () function with an object of the relevant class as a
parameter.

R> names (i)

[1] "getData" "getDataAtPoint" "getMetadata"
[4] "getDataType" "getDimensionality" "getDimensions"
[7] "getEndianness" "getFieldOfView" "getOrigin"
[10] "getSource" "getVoxelDimensions" "getVoxelUnit"
[13] "isInternal" "setEndianness" "setSource"
[16] "summarise" "summarize"

Slices of an image, maximum intensity projections and “contact sheet” style visualizations
of all image slices can be easily created, with the aspect ratio of the image set according to
the voxel dimensions. Simple image processing operations such as applying a lower intensity
threshold can also be applied, creating new MriImage objects.

R> createSliceGraphic(i, z = 37)
R> j <- newMriImageByThresholding(i, 150)
R> createSliceGraphic(j, z = 37)

The plane of the graphic is set by the option z = 37, indicating the slice perpendicular to
the z-axis (bottom-to-top), 37 voxels from the bottom of the brain volume. The two graphics
resulting from the code above may be seen in Figure 1.

New images may also be created by applying an arbitrary function to an existing image, or a
pair of images, as in the examples below.
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R> k <- newMriImageWithSimpleFunction(i, function (x) x~2)
R> 1 <- newMriImageWithBinaryFunction(i, j, "*")

Multiplying images, as in the latter example, may be achieved more succinctly using the
standard operator, as in i * j.

DICOM (Digital Imaging and Communications in Medicine; see http://dicom.nema.org/)
is an extremely complex standard for storing and transferring medical imaging information,
and is the format in which image data is usually obtained from an MRI scanner. An MriImage
object may be created from a DICOM file — or a directory of related DICOM files where each
file represents a slice of a larger image — and subsequently converted to NIfTI-1 format.

R> i <- newMrilmageFromDicom(file.path(Sys.getenv("TRACTOR_HOME"), "tests",
+ "data", "dicom", "O1.dcm"))
R> print (i)

* x % *x INFO: Image source : /usr/local/tractor/tests/data/dicom/01.dcm
* % * * INFO: Image dimensions : 224 x 256 voxels

* x % *x INFO: Coordinate origin: (1,1)

* x x x JNFO: Voxel dimensions : 1 x 1 mm

* x x x JNFO: Data type : unsigned integer, 16 bits/voxel

* x x x JNFO: Endianness : little

R> writeMrilmageToFile(i, "image", "NIFTI")

The output file will be called image.nii.?

Alternatively, a DICOM file may be read into a DicomMetadata object, which retains all of
the information stored in the file. Individual DICOM “tags”, containing information about
the scan acquisition, may then be extracted.

R> m <- newDicomMetadataFromFile(file.path(Sys.getenv("TRACTOR_HOME"),
+ "tests", "data", "dicom", "01.dcm"))
R> m$getTagValue (0x0018, 0x0087)

[1] 1.494
R> getDescriptionForDicomTag(0x0018, 0x0087)
[1] "Magnetic Field Strength"

Finally, an MriImage may be created from a standard R array object, by associating it with
an MriImageMetadata object. The latter contains all of the information about an MriImage,
but not the actual voxel values. In the following example we create a mask image whose value
is 1 wherever the original image is positive and 0 everywhere else. This could be more simply
achieved using newMriImageWithSimpleFunction, but the longer version is instructive.

2A gzipped NIfTT file, or image/header pair, may be obtained by substituting "NIFTI_GZ" or "NIFTI_PAIR"
as the last argument to writeMriImageToFile.
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R> i <- newMrilmageFromFile(file.path(Sys.getenv("TRACTOR_HOME"), "share",
+ "mpni", "brain.nii.gz"))

R> d <- array(as.integer(i$getData() > 0), dim = i$getDimensions())

R> m <- newMrilmageMetadataFromTemplate (i$getMetadata(),

+ datatype = getDataTypeByNiftiCode(2))

R> j <- newMrilmageWithData(d, m)

The first line here reads the original image, and the second binarises it. The third line creates
an MriImageMetadata object which is identical to that associated with the original image,
except that its data type is changed to save disk space?. The final line creates the new image
object.

4. Modeling the diffusion-weighted signal

The tractor.session package for R defines the MriSession class, which encapsulates a single
scanning session with a single subject, and manages a hierarchy of image files and other
information which relate to that scan. Since several of these files are involved in performing
most data processing tasks, the abstraction obviates the necessity to specify each of these files
individually — rather, only the top-level directory containing the session data need be given
explicitly.

Some initial preprocessing is required to move from a set of raw data files acquired from an
MRI scanner to a data set ready for fiber tracking as laid out below, and tractor.session
provides tools to perform that preprocessing, but those steps are omitted here for brevity.*

4.1. The diffusion tensor

Diffusion MRI data are usually acquired as a series of 3D volumes, each of which has an asso-
ciated diffusion sensitizing magnetic gradient applied along a particular direction relative to
the scanner’s native coordinate system, represented as a normalized column vector, G. Under
the assumption that the spatial distribution of diffusing water molecules after a particular
time, ¢, is 3D Gaussian, the relationship between the signal amplitude in the presence of
diffusion sensitization, S, and the signal without it, Sy, is

S(,G)
So

= exp (—bGTDG) . (1)

Here, b is the diffusion “weighting factor”, which depends on the diffusion time and the strength
of the magnetic gradient applied. D is known as the “effective diffusion tensor”, represented
relative to the scanner’s coordinate system, and is related to the covariance matrix of the 3D
Gaussian molecular displacement distribution by ¥ = 2Dt. Using Equation 1, the elements
of the diffusion tensor matrix may be estimated in each voxel of the brain from the log-
transformed signal intensities with and without diffusion weighting using ordinary or weighted
least-squares estimation, or more sophisticated methods where required. The combination of

3The meanings of the various NIfTT data type codes can be found from the variable .Nifti$datatypes.

“The preproc script, inside the full TractoR distribution’s share/experiments subdirectory, demonstrates
how each of the standard preprocessing steps can be achieved. They are: conversion of DICOM files to
NIfTI-1 format if required (as described in Section 3); coregistration of diffusion-weighted volumes; and brain
extraction.
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Figure 2: Ellipsoids representing isotropic (a), oblate (b) and prolate (c) diffusion profiles,
along with a map of fractional anisotropy in a slice of the human brain (d).

dMRI acquisition with diffusion tensor estimation is referred to as diffusion tensor imaging
(Basser et al. 1994).

With the diffusion tensor estimated at each voxel in the brain, it is common for many appli-
cations to calculate the eigenvalues, A1, A2 and A3, of each tensor, along with various derived
quantities. The eigenvalues represent effective diffusivities, generally specified in mm? s—1,
along the principal axes of the displacement distribution. From these are typically calcu-
lated measures such as mean diffusivity (MD), the mean of the eigenvalues, A, and fractional

anisotropy (FA), given by

3 (AL —=N2+ (A2 — A2+ (A3 — N)2
FA =4/= . 2
\/;\/ A2+ 0D+ )\32 )

Considering the isosurface of probability density after a given diffusion time as an ellipsoid,
MD describes the volume of the ellipsoid while FA describes its shape. FA is zero for a spherical
ellipsoid, representing isotropic diffusion, while it is close to unity when one eigenvalue is
substantially larger than the others, corresponding to a prolate ellipsoid (Figure 2a—c). The
white matter of the brain is highly linearized, and FA is consequently higher in these regions
(Figure 2d).

Diffusion tensor fitting may be performed with TractoR using either ordinary least-squares or
iterative weighted least-squares approaches. The latter is recommended due to heteroskedas-
ticity in the log-transformed signal intensities (Salvador et al. 2005). It may be performed as
follows.

R> library("tractor.session")

R> s <- newSessionFromDirectory(file.path(Sys.getenv("TRACTOR_HOME"),
+ "tests", "data", "session-12dir"))

R> createDiffusionTensorImagesForSession(s, method = "iwls")

This command will use preprocessed data files already stored in the specified session directory
to estimate diffusion tensors at each image voxel, and write out a series of images represent-
ing various quantities derived from it or its diagonalization, including MD and FA.?> Ordinary

5Be aware that running this command on the test data supplied with TractoR exactly as given will overwrite
some standard test files, and may lead to some of TractoR’s self tests failing afterwards. It is therefore preferable
to use a copy of the test data, or a different data set, when experimenting.
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least-squares tensor fitting may be performed by substituting method="1s" into the last com-
mand. The full path to any particular image created within the session directory in this way
may be obtained as follows.

R> s$getImageFileNameByType ("FA")
[1] "/usr/local/tractor/tests/data/session-12dir/tractor/fdt/dti_FA"

An interface to the tensor estimation tool in the FMRIB Software Library (FSL; see http:
//www.fmrib.ox.ac.uk/fsl/ and Smith et al. 2004) may be used as an alternative, for its
somewhat faster speed, as follows.

R> runDtifitWithSession(s)

In this case only the ordinary least-squares method is used, and FSL must be installed on the
user’s system as well as TractoR.

We note that other diffusion signal models, such as a Gaussian mixture model or the so-called
“g-ball” model, can be fitted to dMRI data using the dti R package (Polzehl and Tabelow
2011).

4.2. A sampling-based approach

The assumption of a 3D Gaussian molecular displacement distribution for self-diffusion of
water in living tissue is oversimplistic. Even in highly linear white matter, more complex
patterns of diffusion occur regularly at the crossings of multiple pathways (Jones 2008). For
the purpose of fibre tracking, discussed in the next section, it is therefore usually desirable
to allow for contributions from multiple fibre populations with different orientations. One
such generalisation, described by Behrens et al. (2007) and often referred to as the “ball
and sticks” model, treats the displacement distribution as a mixture of pure isotropic and
anisotropic components. Assuming that the orientation of the ith fibre population is given
by the column vector N;, the signal model then becomes

S(Z’OG) = (1 - ; fi> exp(—bD) + ; Jiexp <—bD (GTNZ')2> > (3)

where f; € [0, 1] is the volume fraction of the ith anisotropic component, and D is the effective
diffusivity.

In a standard dMRI acquisition, the known values in Equation 3 are b and G, while S and
So are observed, and D, (f;) and (N;) are to be estimated. Rather than calculate point
estimates of these parameters, Behrens et al. (2007) put forward a Markov chain Monte
Carlo (MCMC) approach to estimating their posterior distributions.® They refer to their
algorithm as BEDPOST (Bayesian estimation of diffusion parameters obtained using sampling
techniques). The algorithm is provided as part of FSL, and TractoR provides a simple interface
to it for R, viz.

5The priors used by the algorithm as published are uninformative. Noise in each voxel is modelled to be
independent and identically distributed Gaussian, with a Gamma distribution prior on the precision parameter.
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R> runBedpostWithSession(s, nFibres = 2)

Here, the nFibres argument determines the maximum number of anisotropic components
allowed per voxel; i.e., the upper limit on ¢ in the model in Equation 3. BEDPOST uses the
automatic relevance determination framework on the volume fraction parameters, (f;), to set
priors which allow the weights of components to be forced to zero where they are irrelevant
for predicting the signal (see MacKay 1995). In this way, only as many components are main-
tained in each voxel as are supported by the data. BEDPOST typically takes several hours
to run, at the end of which a number of new files are created within the session directory, rep-
resenting the estimated distributions for each parameter of interest — notably the orientation
vectors, (N;).

5. Fibre tracking

Diffusion fibre tracking, or “tractography”, is the process of reconstructing white matter tract
trajectories by following the local orientation information estimated as described in Section 4.
It has a wide spectrum of applications in clinical imaging and neuroscience.

5.1. Tracking from single seed points

The standard algorithm for performing streamline tractography from a single seed point may
be described as follows.

1. Start with the current “front” of the streamline set to the seed point.
Sample a local fibre orientation at the streamline front.
Move the front some small distance in the direction of the sampled direction.

Return to step 2, and repeat until a stopping criterion is met.

BTl R

Return to step 1 and repeat once, travelling in the opposite direction away from the
seed point.

Step 2 in the process described above involves some subtlety. Firstly, if a point estimate
of the local fibre orientation is used — such as the principal eigenvector of a single diffusion
tensor — then the sampling is deterministic. If MCMC is used to estimate a distribution
over orientations, on the other hand, then the sampling may be repeated multiple times with
different results in general. Thus, multiple streamlines may be generated from a single seed
point. Local uncertainty will tend to accumulate in the streamlines’ trajectories as one moves
away from the seed point, and a set of streamlines generated in this way give an indication of
the precision available for tracking pathways from the seed. Secondly, in models of diffusion
allowing for multiple anisotropic components, multiple fibre directions may be present within
each voxel, and one must therefore decide which component to sample from. The convention
is usually to sample from all components, and then choose the sample which is most similar
to the orientation of the previous step; but alternative strategies are possible, and may be
more robust (e.g., Clayden and Clark 2010).

White matter pathways terminate in grey matter, which does not have the orientational
coherence of white matter, and orientation uncertainty is therefore very high in these areas.



10 TractoR: Magnetic Resonance Imaging and Tractography with R

Figure 3: Example of fibre tracking in the brain. A set of 1000 sampled streamlines from
a single seed point (the red dot) are shown individually (a), and summarised in a visitation
map (b).

Stopping criteria usually ensure that the streamline does not leave the brain or turn back on
itself, but entering grey matter may also be a reason to stop tracking.

Assuming BEDPOST has already been run on the session directory, and FSL is installed on
the user’s system, single seed tractography can be run as follows.

R> library("tractor.nt")

R> s <- newSessionFromDirectory(file.path(Sys.getenv("TRACTOR_HOME"),

+ "tests", "data", "session-12dir"))

R> 1 <- newStreamlineSetTractFromProbtrack(s, c(49, 58, 14), nSamples = 1000)

The second argument to newStreamlineSetTractFromProbtrack here provides the 3D coor-
dinates of the seed point — using the R convention of indexing from one — and nSamples is the
number of streamlines to generate. (If nSamples is set to 1, then only a single streamline is
generated, and the result is analogous to “deterministic” tractography.) The actual tracking
is performed by FSL’s “Probtrack” program. The resulting set of streamlines, which has class
StreamlineSetTract, may be visualised using the plot method, viz. plot(1). The result is
shown in Figure 3a.

A common method of presentation for tractography results is as a visitation map or spatial
histogram, an image with the same resolution as the original dMRI images wherein each voxel’s
value is the number of streamlines which pass through it. An example, corresponding to the
tracking result obtained above, is shown in Figure 3b, as a maximum intensity projection
overlaid on a slice of the FA image. This visualisation may be created using the following
TractoR code.

R> f <- s$getImageByType ("FA")

R> i <- newMrilmageAsVisitationMap (1)

R> createSliceGraphic(f, z = 14)

R> createProjectionGraphic(i, axis = 3, colourScale = 2, add = TRUE)

The axis option in the last line controls the axis of the projection, while the colourScale
option is used to select a heatmap, rather than grayscale, color scale for the overlay. Since
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add = TRUE is given, the projection is overlaid on the FA slice graphic created by the previous
command.

If only a visitation map is required, without the intermediate set of streamlines, then the
same effect may be achieved using the command

R> r <- runProbtrackWithSession(s, c(49, 58, 14), mode = "simple",
+ requireImage = TRUE, nSamples = 1000)

The result of this command, r, will be an R list including an element, r$image, which contains
the visitation map as an MriImage object.

5.2. Tracking between regions

An alternative to single seed tractography which is relevant to many applications is tracking
between regions of the brain. Under this arrangement, a seed region is used to generate
streamlines, and one or more “waypoint” regions are used to constrain their paths. In most
implementations, streamlines which do not pass through all of the waypoint regions are simply
discarded.

TractoR provides facilities for generating images representing simple cuboidal regions, and
performing tracking using them as seed and target masks. For example,

R> sm <- newMrilImageAsShapeOverlay(type = "block", baseImage = f,

+ centre = c(41, 70, 15), width = 3)

R> wm <- newMrilImageAsShapeOverlay(type = "block", baseImage = f,

+ centre = c(55, 69, 16), width = 3)

R> r <- runProbtrackWithSession(s, mode = "seedmask", seedMask = sm,

+ waypointMasks = list(wm), requireImage = TRUE, nSamples = 50)

R> createSliceGraphic(f, z = 15)

R> createProjectionGraphic(r$image, axis = 3, colourScale = 2, add = TRUE)
R> createSliceGraphic(sm, z = 15, colourScale = '"green", add = TRUE)

R> createSliceGraphic(wm, z = 15, colourScale = "blue", add = TRUE)

Figure 4: A visitation map showing the results of fibre tracking between regions. 50 stream-
lines have been generated from each voxel location within the seed region (green), and only
those streamlines which passed through the waypoint region (blue) have been retained.
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In this case, the nSamples option controls the number of streamlines generated per seed point
within the mask. These commands create a seed mask and waypoint mask (each as a 3 x3 x 3
voxel block: the first two lines), run tractography using them (line 3), and visualise the results.
The visualisation is built up with an FA slice as the base layer, then a projection of the tract,
and finally the two regions of interest. It can be seen in Figure 4.

5.3. Neighbourhood tractography

“Neighbourhood tractography” is an alternative to waypoint methods, which uses a reference
tract and machine learning methods to find consistent representations of a particular tract of
interest in a group of AMRI data sets (Clayden et al. 2007, 2009b). The principle is to model
the variation in shape of the tract across individuals, and then evaluate the plausibility of a
given “candidate tract” as a match to the reference tract. The tractor.nt package provides
functions and supporting data structures for performing neighbourhood tractography, and
a standard set of reference tracts are provided with the main TractoR distribution (Mufioz
Maniega et al. 2008). New reference tracts may also be created by the user.

Reference and candidate tracts are represented for these purposes as B-splines with a fixed
distance between knot points. Where multiple streamlines are generated from a single seed
point, the spline is fitted to the spatial median of the set. One knot is arranged to coincide
with the seed point, and for the ith candidate tract in a data set there are then L! knots
to one side of the seed, and L to the other. Working away from the seed point, we denote
the angle between the straight line connecting knot v — 1 to knot w, and its equivalent in the
reference tract, with ¢!. The index, u, is taken as being negative to one side of the seed, and
positive to the other side.

A set of indicator variables, (z%), describe which candidate tract is the best match to the
reference tract within the data set, such that z* = 1 if tract 4 is the best match and z* = 0
otherwise. The special case 20 = 1 is also allowed, to indicate no match. The likelihood of the
model given the observed data then depends on the value of the relevant indicator variable.
Our aim is to establish the posterior distribution P(z*| D), where D represents all data’, for
all candidate tracts, subject to the constraint that

N
ZP(zi =1)=1;
=0

i.e., there is exactly one best match, or none.

Given the shape and length data for the best matching tract and an appropriate reference
tract, the likelihood is given by

P(di|A7p7zi = 1) = P(Li‘[f{,phzi = 1)P(LZ2 |L§,p2,zi = 1)
L L
x [[ P ul w2 = 1) [ P(¢ | aw, 2 = 1), (4)

where d' = (Lt, L%, (¢1)), A = (o) and p = (p1,p2) — the latter two being parameters
of the model. L} and L} are the lengths of the reference tract corresponding to L and L}

"Note that the data here are not the raw images acquired from the scanner, but rather the variables
describing tract shape which are derived from them.
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Figure 5: Graphical representation of the tract shape model for tracts matched to a reference
tract, including priors on model parameters. The shaded nodes represent observed variables.

respectively; vil = min{Lﬁ, 1}, and equivalently for Eé. The corresponding forward model
for tracts which do not match the reference (i.e., with z¢ = 0) is uninformative, since the
reference tract is not a good predictor of their topologies.

A graphical representation of this model is shown in Figure 5, and the distributional details
are as follows.

L | L} ~ Multinomial(n, p1)
LY | Ly ~ Multinomial(ns, p2) (5)
cos ¢l + 1

5 ~ Beta(ay, 1)

where n; = |p1], and equivalently for ny. Multinomial distributions are appropriate for the
tract length variables because they reflect the number of knots either side of the seed point,
which must be integral. The true length of the tract is therefore approximated by the sum of
the fixed-length gaps between knots. We apply the prior

ay — 1 ~ Exponential()\) | (6)

which constrains each «,, to ensure that smaller deviations from the reference tract are always
more likely (i.e., ay, > 1), and also regularises their distributions to avoid model overfitting
for small data sets.

The model may be fitted in a supervised fashion by choosing a set of training tracts represent-
ing good matches to the reference (Clayden et al. 2007), or taking an unsupervised approach
using an expectation-maximisation (EM) algorithm (Clayden et al. 2009b). The unsupervised
approach is generally preferable in applications, unless test data are very scarce, in which case
it may be helpful to train from another population. The same framework may also be used
to remove individual streamlines which are inconsistent with the trajectory of the reference
tract (Clayden et al. 2009a).

A set of B-spline tract representations suitable for training or evaluating against a model may
be created using the following commands.

R> library("tractor.nt")
R> s <- newSessionFromDirectory(file.path(Sys.getenv("TRACTOR_HOME"),
+ "tests'", "data", "session-12dir"))
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R> r <- getNTResource("reference", "pnt", list(tractName = "genu"))
R> n <- createNeighbourhoodInfo(centre = c(49, 58, 14), width = 3)
R> 1 <- calculateSplinesForNeighbourhood(s, n, r, nSamples = 100)

Here, we are using the standard reference for the “genu” tract as the reference®, and creating
B-spline candidate tracts for every point within a 3 x 3 x 3 voxel neighbourhood centred at
(49,58,14). Each B-spline is fitted to the median of 100 sampled streamlines. We must then
calculate the components of d* for each seed point, and this is achieved with

R> d <- createDataTableForSplines(1l, r$getTract(), "knot", subjectld = 1,
+ neighbourhood = n)

The reference tract needs to be provided here to calculate the angles, (¢¢,), between segments
of the reference and candidate tracts.

We can now fit a model using these B-spline tracts as training data. (Of course, this is
not wise in practice without manually removing aberrant tracts, and in any case tracts from
several data sets should be used for a generalizable model, but this serves to illustrate the
method.)

R> m <- newMatchingTractModelFromDataTable(d, r$getTract(), lambda = 1,
+ alphaOffset = 1, weights = NULL, asymmetric = TRUE)
R> print (m)

* x x *x JNFO: Asymmetric model : TRUE

* x % * INFO: Alphas (left) :1.98, 1.96, 1.95, 1.97, 1.98
* *x *x x INFO: Alphas (right) :1.99, 1.95, 1.97, 1.96, 1.91
* * *x *x INFO: Ref tract lengths : 6 (left), 6 (right)

* x x x JNFO: Length cutoff : 13

* % * *x INFO: Point type : knot

The model object has class MatchingTractModel. The values of lambda (\), alphaOffset
and weights specified here will have a significant effect on the outcome — indeed, with only
one subject in the data set, the prior dominates in this example, limiting the values of
severely. The larger the value of 1lambda, the greater the extent to which the prior will favour
small values of ay,, since the exponential prior has mean 1/A. A value of alphaOffset=1
corresponds to the prior in Equation 6. If the specified weights are NULL, then each tract
is given the same weight. In the EM context, this corresponds to an assumption that each
tract is a priori equiprobable. The asymmetric parameter determines whether a constraint
that a, = a_, should be applied (the symmetric case) or not (the asymmetric case). It is
generally wise to set this to TRUE unless very few data are available.

The trained model generated above may be used directly to calculate the posterior matching
probabilities of a new set of candidate tracts. However, in applications it is often helpful to
work in an unsupervised fashion, learning the model and calculating posteriors in one go,
since this removes the need for separate training data. This can be achieved as follows.

8The getNTResource() function is used to obtain various standard resources provided with TractoR for
performing neighbourhood tractography. In this case, we are requesting a reference tract ("reference"),
associated with tract name "genu", appropriate for probabilistic neighbourhood tractography ("pnt").
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R> m <- runMatchingEMForDataTable(d, r$getTract(), lambda = 1,
+ alphaOffset = 1, asymmetricModel = TRUE)

R> print (m$mm)

* % * % INFO: Asymmetric model : TRUE

* * x *x INFO: Alphas (left) :1.98, 1.96, 1.94, 1.97, 1.98
* x % * INFO: Alphas (right) :1.98, 1.95, 1.97, 1.96, 1.92
* x % *x INFO: Ref tract lengths : 6 (left), 6 (right)

* % * * INFO: Length cutoff : 13

* * % *x JNFO: Point type : knot

R> which.max(m$tp[[1]])
[1] 14

The list m$tp gives the tract matching posteriors for each subject in the data set. Here, under
the final model, the 14th (of 27) candidate tracts has the highest posterior. The mean FA
within this tract may finally be calculated as follows.

R> t <- runProbtrackWithSession(s, n$vectors[ , 14], mode = "simple",
+ requireImage = TRUE, nSamples = 1000)
R> calculateMetricForResult(t, type = "fa", mode = "binary",

+ threshold = 0.01)
[1] 0.4503506

This represents the mean FA within the region visited by at least 1% (threshold=0.01) of the
streamlines initiated from the final seed point. Mean FA values from a full data set may then
be analysed using standard R hypothesis testing functions such as t.test () or cor.test().

It should be noted that there is considerable scope in the code provided with the tractor.nt
package for adjusting the exact processes applied, or for using similar models for other pur-
poses, but we have focussed on a standard usage here for brevity.

6. The TractoR shell interface

In addition to the three main R packages whose major functionality has been laid out above,
TractoR provides a shell interface and set of related R “experiment scripts” for performing
various common tasks quickly and directly. In addition, it allows those without experience
of working with R to use some of TractoR’s core functionality immediately. An additional
R package, tractor.utils, exists mainly to support this interface. It should be noted that the
interface uses a Unix shell script and is therefore not directly usable in Windows.

The interface works through a single shell script program called tractor, which may be
executed by typing just its name if the bin subdirectory of the TractoR distribution is on the
user’s PATH. Specific tasks are chosen by giving the name of a particular experiment script:
for example, the preproc script may be used for preprocessing dMRI data, the track script
can be used for performing tractography, and so on. All available experiment scripts may be
listed by using the 1ist script, viz.
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sh> tractor list
Starting TractoR environment...
Experiment scripts found in /usr/local/tractor/share/experiments:

[1] age binarise camino2fsl caminofiles
[5] chfiletype contact dicomread dicomsort

[9] dicomtags dirviz extract fsl2camino
[13] gmap gmean hnt-eval hnt-interpret
[17] hnt-ref hnt-viz identify imageinfo
[21] list mean mkbvecs mkroi

[25] mtrack peek platform plotcorrections
[29] pnt-collate pnt-data-sge pnt-data pnt-em

[33] pnt-eval pnt-interpret  pnt-prune pnt-ref

[37] pnt-train pnt-viz preproc proj

[41] rtrack slice status track

Experiment completed with O warning(s) and O error(s)

In addition, a description and list of supported arguments and options for a particular script
may be obtained by using the -o flag to the tractor program.

sh> tractor -o mean
OPTIONS for script /usr/local/tractor/share/experiments/mean.R (* required)
Metric: NULL [weight,AVF,FA,MD,Lax,Lrad]
AveragingMode: binary [weighted]
WeightThreshold: 0.01
ThresholdRelativeTo: nothing [maximum,minimum]
ARGUMENTS: image file, [session directory]

Calculate the mean or weighted mean value of a metric within the nonzero

region of a brain volume (usually tractography output). The metric can be
FA, MD, Lax, Lrad or AVF, and the specified image can be used as a binary
mask (the default) or as a set of weights (with AveragingMode:weighted).

In the latter case any weight threshold given is ignored.

The tractor program has a full Unix man page, and that may be consulted for further details
on how to use and configure this interface.

7. Conclusion

In this paper we have described TractoR, a set of R packages along with a separate shell
interface and scripting platform for processing magnetic resonance images in general, and
dMRI data in particular. The package provides facilities for general-purpose reading, writing
and manipulation of 2D, 3D and 4D images, along with signal modelling, tractography and
tract shape modelling functions specific to dMRI. It is intended that this platform will continue
to broaden in the future, making further use of the comprehensive statistical capabilities of the
R language and package ecosystem. Reducing TractoR’s reliance on FSL for key functionality
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such as tractography and registration is also planned for the future, for example by making
use of the recently released RNiftyReg image registration package (Clayden 2011).
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