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Abstract

We describe a simple and efficient approach to
learning structures of sparse high-dimensional
latent variable models. Standard algorithms ei-
ther learn structures of specific predefined forms,
or estimate sparse graphs in the data space ignor-
ing the possibility of the latent variables. In con-
trast, our method learns rich dependencies and
allows for latent variables that may confound the
relations between the observations. We extend
the model to conditional mixtures with side in-
formation and non-Gaussian marginal distribu-
tions of the observations. We then show that
our model may be used for learning sparse la-
tent variable structures corresponding to multi-
ple unknown states, and for uncovering features
useful for explaining and predicting structural
changes. We apply the model to real-world fi-
nancial data with heavy-tailed marginals cover-
ing the low- and high- market volatility periods
of 2005-2011. We show that our method tends to
give rise to significantly higher likelihoods of test
data than standard network learning methods ex-
ploiting the sparsity assumption. We also demon-
strate that our approach may be practical for fi-
nancial stress-testing and visualization of depen-
dencies between financial instruments.

1 Introduction

Finding structure in data is one of the most fundamental
problems of data analysis and machine learning. In this pa-
per we note that learning and understanding relationships
between variables may be viewed as probabilistic inference
undersparsity constraints on the structure of an underlying
latent variable model. A statement that data is “structured”
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often implies existence of a sparsely connected graphical
model (such as a tree or a bipartite graph) that gives rise
to the observations, whereas “unstructured” data is often
too complex to be accurately represented by a sparse net-
work. The ability to efficiently discover sparse represen-
tations of data is fundamental for knowledge representa-
tion, interpretability of inferences, computational tractabil-
ity, and generalization, with applications ranging from sys-
tems biology to social marketing and finance.

Standard methods for learning network structures are based
on expensive and difficult-to-analyze combinatorial search,
where a huge space of possible networks is traversed
heuristically to find networks scoring highly by some
measure, and/or satisfying conditional independence con-
straints. The vast majority of such approaches cannot be
easily extended to handle latent variables, or may only be
used for limited classes of low-dimensional models (e.g.
[8, 19, 16, 36, 11, 29] and references therein). Recently
[21] described an extension that selects the best fitting
model from several candidate structural forms. Other meth-
ods may only be used to learn structures of specific prede-
fined forms, with hard constraints on the number of node
parents and their cardinality in a directed network [41, 18].
While these approaches are justified when it is knowna pri-
ori that the structure belongs to a standard class of models,
they may not be appropriate in a more general real-world
setting with richer underlying models. In some cases an ex-
plicit constraint on the structural form of a model can make
the inference problem more complex than necessary, and
so not scalable to higher dimensions.

Recently there has been much work on learning sparse
structures of fully observed Gaussians (e.g. [5, 14, 27, 24]).
In contrast to combinatorial search approaches relying on
greedy heuristics, these more specialized methods view
structure learning as the problem ofcontinuous optimiza-
tion. The only constraint specified explicitly is sparsity of
the underlying Gaussian in the data spacep(y), which is
enforced by imposing sparseness-inducing penalties on the
elements of the precision matrix. A simple approach to
the resulting optimization problem is the graphical LASSO
(GLASSO) of [14], that has been successfully applied to
estimating sparse inverse covariances for thousands of vari-

10



Discriminative Mixtures of Sparse Latent Fields for Risk Management

y

(i)

y

(ii)

y

z

(iii)

x

yỹ z
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Figure 1: (i) Fully-observed model with a densely-
structured marginalp(y) (shaded nodes correspond to the
observed variablesy; thicker lines indicate stronger pair-
wise potentials).(ii) Structure of a fully observed model
with a sparsity constraint onp(y). Sparsity in the data space
may give rise to extraneous conditional independences and
results in a pruning of potentially important regularities.
(iii) Sparse latent fieldp(y, z) with a dense marginalp(y)
(latent variablesz are represented by transparent nodes).
Note that in contrast to latent factor models, the conditional
p(y|z) may contain residual couplings.(iv) Discriminative
mixture of latent field models. Each expertp(y, z|w, x) has
a sparse structure in the augmented space{y, z}, which is
enforced by imposing a sparsity-inducing prior on the undi-
rected structure specified byΣ−1

w . Side informationx is
taken into account by explicitly parameterizing the gating
distribution p(w|x;V) and expertsp(y, z|x, w;Uw,Σ

−1
w ).

The mappingy → ỹ is one-to-one. In the case of dis-
criminative mixtures of sparse latent Gaussians,ỹ ≡ y. In
the case of copulas,y is a Gaussianized representation of a
non-Gaussian observationỹ.

ables; other efficient optimization approaches are reviewed
and compared in e.g. [15]. The key assumption of these
methods is that the data is complete, i.e. there are no miss-
ing observations or latent factors influencing the relations
between the modeled variables.

This work is motivated by several simple observations
about structure in real-world data. First, we observe that
the notion of structuredness of data is tightly linked to the
sparsity of the underlying data representations in theaug-
mented space of the visible and hidden variables{y, z},
rather than sparsity in the data space{y} alone. Herey and
z are the observations and latent variables respectively. In
situations where some variables may be hidden or missing
(which is common in a broad range of real-world applica-
tions ranging from finance to systems biology), setting ex-

plicit sparsity constraints on the marginalsp(y) may lead
to pruning of important regularities and result in poten-
tially misleading representations of underlying structures
(see Figure 1 (i)–(iii)). Note that sparseness of the joint
structure in the augmented space is a standard assumption
of many commonly used latent variable models, including
latent trees, hidden Markov models, restricted Boltzmann
machines, etc., all of which may give rise to potentially
dense marginalsp(y). While it is commonly assumed that
sparse structures are heuristically fixeda priori, we are in-
terested in inferring them from data, with the only con-
straint being sparsity ofp(y, z).

The second important observation is that in many real-life
applications, structural dependencies between the variables
are hardly ever homogeneous for all data samples and may
often depend on poorly understood latent states. For exam-
ple, some subgroups of cancer patients may be more sus-
ceptible to chemotherapy than others, which may be man-
ifested through different structures of proteomic networks.
In the financial risk management problem, dependencies
between returns of portfolio composites may vary based on
market conditions. It is intuitive that a single smooth model
may be too coarse to adequately represent finer structure.

The third observation is linked to the fact that inference of
the unknown states that may affect structural dependencies
may often be facilitated by side (concomitant) information
or other explanatory variables. Experts in a subject area are
often able to construct very high-dimensional vectors of
features which, according to their knowledge of the field,
may help to predict structural changes. Also, fund man-
agers may need to be able toexplain which few macroeco-
nomic or market indicators, types of news announcements,
etc. are most predictive of new market regimes, so that they
can better motivate changes in their management strategies
to their customers. This ability to identify the few impor-
tant features most strongly affecting the resulting structures
is particularly important indecision support applications,
where the final managerial decisions are left to humans.

The fourth, but rather obvious, observation is that a mul-
tivariate Gaussian will rarely be a good model of high-
dimensional real-world data. This is the case, for example,
in finance [12].

The common methods for high-dimensional sparse struc-
ture learning either ignore the four practical observations
discussed above - as is the case for fully observed sparse
Gaussians MRFs - or address only one of them in a man-
ner that is not easily extensible [28, 6]. Motivated by real-
world problems, we extend existing approaches to describe
a sparse discriminative mixture of sparse latent Gaussian
fields. Our model can be used to learn multiple inter-
pretable latent variable structures, each corresponding to a
unique unknown state, and to identify explanatory features
useful for predicting structural changes. By extending the
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model to a conditional mixture with the components de-
fined by sparse latent copulas (Figure 1 (iv)), we also show
that our approach is significantly more accurate than exist-
ing methods when the observations are non-Gaussian.

We demonstrate our approach by applying it to the study of
the influence of market indicators on relationships between
composites of the FTSE100 index of the largest companies
listed on the London Stock Exchange. Our experiments
cover the high- and low- market volatility period of 2005-
2011. We empirically show that our method results in sig-
nificantly higher test likelihoods than the existing structure
learning models exploiting the sparsity assumption. We
also show that our model may be attractive for visualizing
dependencies between portfolio composites, and demon-
strate that it may be practical for financial stress-testing
without having to rely on heuristics or expensive expertise.

2 Methodology

Sparsity of models is important for knowledge discovery,
generalization, and interpretability of relations between the
variables. However, the common assumptions of sparse
Gaussian MRFs that (i) the data is fully observed, (ii) the
underlying model is sparse in thedata space, (iii) the de-
pendencies are accurately modeled by the (inverse) covari-
ance of the Gaussian have severe practical limitations. Here
we will describe the sparse latent Gaussian field model and
its extensions to conditional mixtures of experts that over-
come these limitations.

2.1 Graphical LASSO

It is well known that the structure of a Gaussian graphical
modelp(y) ∼ N (.,Σ) is defined by its inverse covariance
(precision) matrixΣ−1. Variablesyi andyj (i 6= j) are
conditionally independent given all the other variables if
and only if (Σ−1)ij = 0 (see e.g. [9], [25]). That is,
simpler and more interpretable Gaussian models are rep-
resented by precision matrices with greater sparsity. Re-
cently [5] noted that a sparse estimate of the precision

Xyy
def
= Σ̂

−1

yy ∈ R|y|×|y| may be obtained by optimizing
the regularized log-likelihood

max
Xyy≻0

[log detXyy − tr{SyyXyy} − γ‖Xyy‖1] (1)

whereSyy is the empirical covariance,γ is the regulariza-
tion penalty, and‖M‖1 =

∑
ij |Mij |. This is equivalent

to maximum-a-posteriori (MAP) estimation with Laplace
priors on the elements ofXyy [30]. [5] further shows
that (1) is convex, and suggests a block-wise interior-point
procedure for optimizing the equivalent dual problem that
is guaranteed to converge to a globally optimal positive-
definite solution forXyy as long as the initializationXyy

(0)

is also positive-definite. Related approaches discussed by

[31], [40], and [14] vary mainly in the optimization proce-
dures used. The approach of [14], the graphical LASSO
(GLASSO), is based on a fast coordinate descent algo-
rithm, and until very recently was thought to be compu-
tationally efficient [15]. In this paper, irrespective of the
details of optimization, we will refer to any of the methods
for optimizing (1) as graphical LASSO.

2.2 Sparse Latent Inverse Covariance Estimation

In our latent variable extension of GLASSO, we are in-
terested in inferring a sparsely structuredX of a Gaussian

p(y, z;X), whereX
def
= [Xyy Xyz;Xzy Xzz] is the joint preci-

sion. By imposing a sparsity-inducing prior on the structure
p(X) ∝ exp{−γ‖X‖1}I(X ≻ 0) and considering the MAP
approximation of Bayesian inference, the task reduces to
optimizing

max
X≻0

[
log detΣ−1

yy − tr{SyyΣyy
−1} − γ‖X‖1

]
(2)

whereΣyy
−1 def

= Xyy − XyzXzz
−1Xzy. Since the term

XyzXzz
−1Xzy in (2) is generally dense, it is clear that op-

timization of (2) may result in dense marginalsp(y); how-
ever, the regularization term‖X‖1 encourages sparsity of
the joint modelp(y, z). In contrast to the GLASSO objec-
tive (1), optimization problem (2) is no longer convex in
the blocks ofX. It is also easy to see thatXzz needs to be
constrained in order to avoid invariance of the solutions un-
der simultaneous rescaling ofXzz andXzy, which may be
achieved by penalizing matricesX with small determinants,
or explicitly constraining the trace or diagonal elements of
Xzz. Such constraints are analogous to fixing the variances
of the latent factors in factor analysis or random effect mod-
els. It is important to note that in contrast to factor analysis,
Xyy is not necessarily diagonal, i.e. the conditionalp(y|z)
is generally not factorized iny. Also, due to the choice of
sparse prior onX, the hidden-visible blockXyz is generally
not rotation-invariant.

To optimize (2), we take the route of a simple and compu-
tationally efficient (structural) EM approach for the MAP
criterion. In our case the regularized complete-data log-
likelihood is given by

Q(X;X(t−1)) = log detX− tr{S(t−1)X} − γ‖X‖1 (3)

whereX ∈ R(|y|+|z|)×(|y|+|z|) is the precision in{y, z}, and

S(t−1) def
= cov(vec{y, z}|X(t−1)) is the estimate of the joint

covariance conditioned on the previous structure and aver-
aged over the empirical distribution. The latter is computed
in the E-step. The M-step consists of finding the positive
semi-definiteX that optimizes (3). Note that the objective
(3) takes the same form as the graphical lasso objective (1).

From (3) it is straightforward that the M-step of the algo-
rithm reduces to performing an iteration of GLASSO in
{y, z}, while the E-step evaluates the moments of the joint
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Algorithm 1 Sparse Latent Inverse Covariance Estimation
(SLICE)

InitializeX(0) so thatX(0) ≻ 0
for t = 1 : T do

E-step:

S(t−1) ←
(

Syy SyyA

ATSyy Xzz
(t−1) + ATSyyA

)

where
A

def
= −Xyz

(t−1)(Xzz
(t−1))−1

M-step:
X(t) ← argmaxX

[
log detX− tr{S(t−1)X} − γ‖X‖1

]

such thatX ≻ 0 and(Xzz)ii = const
end for

Gaussian with the previous structure. We call this proce-
dure for fitting sparse Gaussian latent fieldsSLICE (Sparse
Latent Inverse Covariance Estimation). It is shown in Al-
gorithm 1. The M-step may be based on any of the con-
strained GLASSO-like optimization procedures [38, 35,
39]. For example, the LogdetPPA method of [39] is suit-
able for this purpose: it is designed to solve problems of
the form

min
X

[tr{SX} − µ log detX : A(X) = b,X ≻ 0] , (4)

whereA is a linear map andµ is a constant. Another op-
tion is the more general-purpose semidefinite programming
package SDPT3 [38]. We found that SDPT3 is faster than
LogdetPPA on low-dimensional problems (up to around 40
variables or so), but LogdetPPA scales better to higher di-
mensions. So we use SDPT3 on smaller problems and
LogdetPPA if the problem is larger.

2.3 Discriminative Mixtures of Sparse Gaussians and
Conditional Sparse Latent Fields (MSLICE)

SLICE is easily extended to the case of discriminative mix-
tures

p(y, z|x) =
K∑

w=1

p(y, z|x, w)p(w|x), (5)

wherew is a mixture component,p(w|x) is the gating dis-
tribution, andp(y, z|x, w) is thewth expert. Using the stan-
dard notation for mixtures of experts [20], we define vec-
tors of mixture indicatorsw(i) ∈ {0, 1}K (wherew(i)

j = 1

iff x(i) belongs to clusterj) andx is the side information.
Figure 1 (iv) shows the graphical model. We considered
several parameterizations of the expertsp(y|w, x) and the
gating distributionp(w|x). One such choice is to set

πj(x
(i))

def
= p(w

(i)
j = 1|x(i); vj) ∝ exp{−f(vj ; x(i))} (6)

p(y, z|x(i), w(i)
j = 1;Uj) ∼ N (Ujx

(i);X−1
j ) (7)

whereUj ∈ R(|y|+|z|)×|x|, vj ∈ R|x|. By imposing fur-
ther sparsity constraints onUj and vj so thatp(Uj) ∝

exp{−γU‖Uj‖1} andp(vj) ∝ exp{−γv‖vj‖1}, it is pos-
sible to identify features predictive of the underlying struc-
tures. As before, we assume that each expert is sparse in
the augmented space of the visible and hidden variables
p(Xj) ∝ exp{−γ‖Xj‖1}I(Xj ≻ 0).

In this paper we considerf(vj ; x(i)) = vTj x
(i) . Another

useful parameterization is to letf(vj ; x(i)) = vTj Kj(., x
(i))

for a positive semi-definite kernel functionKj evalu-
ated atn training points. By allowingKj(x

(i), x(j)) ∝
exp{−(x(i)−x(j))TMj(x

(i)−x(j))} and imposing sparsity
constraints onvj ∈ Rn and the diagonal matrixMj ∈ R|x|,
it may be possible to cluster structures based on subsets of
features and data points.

For discriminative mixtures, objective (3) is redefined as

Qm = 〈log p({y, z,w, θ}|{x})〉p(w,z|{x},{y};θold), (8)

where θold defines the previously estimated parameters.
Objective (8) needs to be optimized with respect to param-
etersθ that include the structures of expertsXj and param-
etersUj , vj (andMj) for each mixture componentj. The
procedure for fitting discriminative mixtures of sparse la-
tent Gaussians that we callMSLICE is a straightforward
extension of Algorithm 1, where e.g.

〈w(i)
j |x(i), y(i)〉 ∝ πj(x

(i))Nj(y
(i);Uy

j x
(i),Wj

yy), (9)

and the rest is expressed analogously. HereWj def
=

[Wj
yyW

j
yz;W

j
zyW

j
zz]

def
= X−1

j is the estimate of the covari-

ance of thejth expert, andUy
j ∈ R|y|×|x| is they, x block

of Uj . The updates forUj and vj are computed by a
coordinate-wise gradient ascent onQm. They are derived
straightforwardly, in a similar way to the EM treatment of
the classic LASSO regression [13].

Note that our conditional extension of the sparse latent field
model vaguely resembles a CRF (e.g. [23]) by allowing for
rich structures in the target variables and accommodating
the conditioning on side information. However, in contrast
to CRFs, it allows for missing and hidden targets, and im-
poses sparsity constraints on the underlying representations
p(y, z|x). In this paper we focus on a simple setting where
the couplingsXj of each expert depend on the external fea-
turesx only through the choice of the mixing component.
Richer sparse conditional latent fields may potentially be
considered, e.g. by letting the edge-specific penaltiesγij
depend onx.

Other structured representations: By allowing for the
link-specific penaltiesγij , it is easy to encode prior knowl-
edge about the structure. One limited special case is sparse
factor analysis, where there is no residual structure in
p(y|z), i.e. γyiyj

→ ∞ for i 6= j. The results may be
straightforwardly extended to more structured representa-
tions, such as trees or models with deep hierarchies (e.g.
by settingγzizj → ∞ if zi andzj are in non-neighboring
layers).
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2.4 Non-Gaussian Marginals and Gaussianization
(CopMSLICE)

SLICE trains a sparse Gaussian model, but stock price data
is known to be non-Gaussian [12]. For example, in the
FTSE100 data, the kurtoses of single stock distributions
computed over the training time period varies in the range
from 6.3 to 76.7 suggesting heaviness of the tails. Learning
the structure of a general high-dimensional non-Gaussian
distributionp(ỹ) is difficult. One way to do this is by de-
composing the problem into two simpler tasks: capturing
non-Gaussianity of the observations by separately learn-
ing low-dimensional non-Gaussian marginals, and model-
ing the high-dimensional dependency structure by a distri-
bution from a tractable family.

A method of this type is to obtain “Gaussianized” [7] rep-
resentationsyj of the non-Gaussian observationsỹj , so that

yj = 〈ỹj〉+ σ(ỹj)F
−1
G (Fτj (ỹj)), (10)

and fitting a GaussianN (y) to the transformed data. Here
F−1
G is the inverse CDF of a standard Gaussian.Fτj (ỹj)

is a monotonic approximation of the univariate marginal
CDF of a non-Gaussian observation, estimated from data
ỹj by fitting parametersτj . Learning the marginal CDFs
Fτj (ỹj) is a relatively straightforward univariate modeling
problem. Many potential methods are applicable. For ex-
ample, [28] suggest using Winsorized approximations. Al-
ternatively, we can choose to use kernel density estimation
for its speed and simplicity in the “body” of the distribu-
tion, and separate generalized Pareto distributions [4] for
each of the upper and lower tails.

The performance of GLASSO for the Gaussianized vari-
ablesy is discussed in the very recent work of [28], who
model the dependencies by the sparse precisioncov−1(y).
The CDF of the resulting distribution overFτj ’s is a sparse
Gaussian copula [28, 32]; we therefore refer to the method
as CopGLASSO. We extend [28] to the latent variable set-
ting and use the structure ofcov−1(y, z) to model the de-
pendencies. We use SLICE to train a multivariate Gaussian
model of the transformed data. The resulting model com-
bines the learned univariate CDFs with the structure de-
fined by a sparse latent Gaussian field. To draw the analogy
with CopGLASSO, we refer to the method as CopSLICE.

We extend MSLICE to CopMSLICE in a similar manner:
we assign a Gaussianizing function to each expert in the
mixture. The objective becomes

Qf = Qm +
∑

i,k

〈w(i)
k |x(i), y(i)〉

∑

j

log |y′jk(ỹ(i)j )| (11)

whereQm is the MSLICE objective (8),i indexes data
points, j indexes dimensions,k indexes experts, andyjk
is defined similarly to (10). Note that we need smooth and
heavy-tail approximations of the experts’ CDFsFτjk to ac-
count for outliers and ensure differentiability in (11). We
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Figure 2: Negative test likelihoods of GLASSO, SLR, and
MSLICE on the full set of FTSE100 composites, using
∼ 1100 training and∼ 550 testing samples. The test er-
ror of the empirically estimated precision (with its error
bars) is shown by the dashed line. MSLICE outperforms
the competing models for all considered levels of sparsity.

incorporate training of the marginals into MSLICE’s EM
algorithm by performing a gradient ascent forτjk within
the M-step using the generalized Pareto approach.

3 Demonstration

We have applied (M)SLICE to financial stress-testing and
visualization of dependencies between asset returns for the
composites of the FTSE100 index, discarding stocks whose
data did not cover the 6-year period. Our experimental
settings are explanatory rather than predictive: we are
trying to understand the past rather than predict the future.
First we collected the daily closing prices of the stocks
over the period from 2005 to 2011 from Yahoo Finance.
The price data was cleaned and appropriately adjusted for
splits, stock issues, and dividends. The data was converted
to equity returns by computing the ratio of closing prices
on consecutive days. There were 1633 days of returns data
for each stock, which were sub-sampled at uniform random
to generate lower-frequency samples. For illustration of
the comparison of SLICE and GLASSO, it was assumed
that temporal couplings between lower-frequency equity
returns were negligible compared with the high-frequency
intra-day fluctuations (p(y(t), z(t), y(t+∆), z(t+∆)) ≈
p(y(t), z(t))p(y(t+∆), z(t+∆)) for large ∆). In
the demonstration of MSLICE, it was assumed
that the residual temporal couplings are explained
by the technical indicators used as the side in-
formation, i.e. p(y(t), y(t+∆)|x(t), x(t+∆)) =
p(y(t)|x(t))p(y(t+∆)|x(t+∆)).

In our first experiment we compared GLASSO [14], the
very recent sparse-low-rank (SLR) decomposition of [6]
(see Section 4 for details), and MSLICE using all compos-
ites of FTSE100. All the competing methods need to set
penalty parametersγ, and we computed test likelihoods for
different such settings. Basically, we treatedγ as a design
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parameter, which is similar to [14, 28] and is a practical
requirement of explanatory structure learning, where it is
important to ensure that the model gives an accurate repre-
sentation of data even if the model is very sparse. We used
cross-validation to set the cardinality of the latent space|z|
and the number of mixture componentsK for MSLICE, as
both are low-dimensional discrete parameters. We looked
at the range 1:5 for bothK and |z| and found that values
larger than 3 did not make much difference. We also tried
using the SVD of the low-rank component in the SLR de-
composition ofΣ−1

yy to set|z|, but this made little differ-
ence. In the future, we will use nonparametric Bayesian
methods to learn both; however, we are unsure whether this
is going to make much difference for sparser models, as
larger sparsity penalties will tend to prune extraneous com-
ponents and dimensions. For MSLICE, a mixture of factor
analyzers was used to initialize the gating parameters and
means, while the initial precision of each expert was set
to the precision learned by a single sparse Gaussian fitted
to the training set. We only report the results for the non-
kernelized parameterization of the gating distribution (6),
with f(v; x) = vT x.

Figure 2 shows the negative test log-likelihoods of the mod-
els for 82 retained composites. We have used the first
1100 days for training, and the remaining 550 days for
testing. As the side informationx for MSLICE, we con-
sidered several volatility and trend indicators and indices
computed over the preceding training samples for a differ-
ent market (SnP500). For SLR and GLASSO, we modeled
the side informationx jointly with the FTSE100 compos-
itesy, and used the conditionalp(y|x) in the test likelihood
computations. From Figure 2 we see that for all the con-
sidered sparsity parameters, MSLICE significantly outper-
forms GLASSO and SLRindependently of the degree of
sparsity. Interestingly, the single most relevant featureim-
portant for predicting the structural changes in MSLICE
was the implied volatility index (VIX).

We then investigated the non-Gaussian extensions of the
models CopGLASSO, CopSLICE, and CopMSLICE. For
this experiment, we used the 20 largest capitalization stocks
from the financial, mining, and consumable sectors. As be-
fore,K and|z|were determined by cross-validation. In one
experiment, in order for the comparison to be favorable to
GLASSO and SLR, the data was randomly sub-sampled
from the 400-day low-volatility period that was found to be
well-modeled by a single mixture component. The mod-
els were also evaluated on low-volatility test data. For the
demo shown in Figure 3 (top), for each limit on the num-
ber of non-zero links, we started with a lowγ and itera-
tively increased it until each model satisfied this sparsity
constraint. We see that CopSLICE is the best performing
model across a broad range of sparsity constraints. The
copula extension of GLASSO that does not use latent vari-
ables performs well for dense models, but breaks when the

150 125 100 75 50 35 25 20

0.95

1

1.05

1.1

1.15

1.2

1.25

Maximum non−zero connections permitted.

N
e

g
a

tiv
e

 t
e

st
 lo

g
 li

ke
lih

o
o

d
 /

1
0

4
.

 

 

CopSLICE SLICE SLR CopGLASSO GLASSO

0.002 0.005 0.01 0.02 0.04 0.08 0.12

0.95

1

1.05

Penalty on connections between observed variables.

N
e

g
a

tiv
e

 t
e

st
 lo

g
 li

ke
lih

o
o

d
 /

1
04

.

 

 

CopMSLICE MSLICE SLR GLASSO

Figure 3: Top: test errors of the sparse copula and other
unimodal models for low-volatility periods. The number
of possible links is 231.Bottom: test errors of the multi-
modal models, GLASSO, and SLR for combined low- and
high- volatility periods. The test error of the empiricallyes-
timated precision (with error bars) is shown by the dashed
line. CopMSLICE, MSLICE, and CopSLICE are the best
performing models according to the criteria.
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Figure 4: Visualization of relationships between compos-
ites of FTSE100 using 2-component MSLICE correspond-
ing to the low- and high-volatility periods (left, right). The
last three columns represent latent factors. Note the denser
structure of the higher-volatility component.

number of links becomes small. We then repeated the pre-
vious experiment by using the full range of low- and high-
volatility data (see Figure 3 (bottom)), computing the test
errors on the out-of-sample observations. We can again see
that our conditional mixture approaches, CopMSLICE and
MSLICE, are the best performers across all the considered
sparsity parameters.
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Figure 5: The VIX (top) plotted against the posterior re-
sponsibilityp(w(t)|x(t), y(t)) for the 2-component mixture
(bottom). The VIX was the single most important feature
for predicting changes in structure.

Structure Interpretation

After fitting discriminative mixtures of sparse latent Gaus-
sian fields, we proceeded to interpret the resulting struc-
tures pw(y, z) and mixing variablesw. We have used
K = 2, |z| = 3, and setγ by cross-validation for this
visualization experiment. Figure 4 shows precisions of
sparse latent Gaussianspw(y, z) corresponding roughly to
the low- and high-volatility periods. The latent factorsz
roughly capture sector information (the financials, mining,
and consumables are sorted from left to right). RBS’s link
to the commodities could be explained by its over-exposure
to the coal-mining industry. Note that there are many resid-
ual dependencies between the banks and the mining com-
panies in the high-volatility expert. This is to be expected
during the recession period after the financial crisis began
to affect the economy (thus lowering the demand for mate-
rials). The “defensive” consumables are largely unaffected,
with the two strongest pairs inpw(y|z) being the two drinks
(SAB, DGE) and tobacco (BATS, IMT) companies. This
illustrates the spectacular collapse of the so-called “decou-
pling theory” in 2008, which stated that developed markets
(largely built around financial services) are “decoupled”
from the emerging commodity-oriented markets. Figure 5
shows the posterior responsibilityp(w(t)|x(t), y(t)) for the
2-component mixture (bottom) plotted against the most im-
portant side feature – the temporally delayed VIX, where
the black and the white bars at the bottom indicate the prob-
ability of being in either one or the other state.

Financial Stress-Testing

The idea behind financial stress-testing is to test robustness
of a fund or company under fantasy worst-case scenarios,
such as an extended period of extraordinarily high volatil-
ity, collapse or jump of commodity prices, unavailability
of credit, exceptionally high pressure on a sector index and
likewise, as well as combinations of multiple shocks. In
order to test positioning of a fund’s portfolio, it is impor-
tant to be able to generate fantasy equity returns that may

be reflective of the modeled scenario. After the crisis of
the late 2000s, stress-testing is playing an increasingly im-
portant role in financial due diligence and is becoming a
regulatory requirement in Europe. The common approach
to stress-testing relies heavily on human expertise, heuris-
tically assigning higher weights to historical patterns char-
acterized by given combinations of shock factors ([1, 26]).
Such approaches may be prone to human error and are dif-
ficult to analyze or extend. Moreover, it may be difficult
to identify subsets of observations corresponding to com-
binations of generally continuous factors, as many of the
extreme conditions may have been observed rarely in the
past. A natural alternative approach to generating fan-
tasy data corresponding to a shock scenario is by using our
MSLICE approach, which may be applicable even if the
number of past observations is small compared with the
problem’s dimensionality. By including external shocks as
side information inp(y|x), it may be possible to generate
numerous structures for combinations of fantasy scenarios.

In our simple stress-testing experiment, we generated 1000
points of fantasy VIX data by running a Brownian motion
simulation, centering the output on the high value of 60,
and then clipping it to the range 40-80. Samples from the
two trained models (MSLICE and GLASSO) were gener-
ated conditioned on this fantasy VIX data; for GLASSO,
we again modeled the jointp(y, x) and sampled fantasy
data fromp(y|x) wherex was VIX. The other model was
a Gaussian fitted to a manually labeled subset of train-
ing points from a high volatility region. As a proxy for
the ground truth, we used another GaussianpGT (y) with
the empirical mean and covariance computed at the out-
of-sample high volatility regions. For each model we esti-
matedKL(pGT (y)‖p(y|x ∈ R)), whereR is the space of
generated shock scenarios. We have used cross-validation
to setγ, K, and |z| for MSLICE, andγ for GLASSO.
We found the divergences ofKLmslice ≈ 4.35± 0.77,
KLglasso ≈ 5.97 ± 1.44, andKLman ≈ 4.77 ± 0.89
for MSLICE, GLASSO, and the manually generated mod-
els, with the variance due to multiple subsamples. Nei-
ther MSLICE nor GLASSO required human expertise, and
used the labelings only for validation. While validations of
stress-testing results are complex and market-dependent,it
is encouraging that the model was able to outperform a hu-
man expert. This suggests that MSLICE may be a promis-
ing tool for generating fantasy scenarios for stress testing.

4 Discussion

We have described a simple and efficient approach for
learning structures of sparse latent field models based on
the assumption of sparsity in the augmented space of vis-
ible and hidden variables{y, z}. Our approach replaces a
combinatorial search over model structures by a continu-
ous optimization in the space of all such structures, with
sparsity constraints on the graphical models corresponding
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to the joint distributionsp(y, z). It may be useful for a va-
riety of high-dimensional real-world scenarios, where the
present incomplete patterns{y(t), z(t)} may be affected by
the past datax(t−1), but little is knowna priori about the
structural family of the underlying model.

We extended the recently introduced methods for learning
sparse structures of fully observed Gaussians [5, 14, 10, 34,
24] to handle latent variables and side information. There
has been recent work on other methods for inferring struc-
tures of Gaussian graphical models. For example [2] de-
scribes a generative model for structures of fully observed
Gaussian models, where each observed variableyi belongs
to a latent classzi ∈ {1, . . . , k}, and the edge betweenyi
andyj is penalized by a termγzizj . They describe a varia-
tional approximation of the inference and comment on the
technical difficulties of setting these penalty parameters.
[3] formulates a more general approach for fully observed
pairwise Markov networks, with binomial priors on the
present or absent links. Our framework is different, since
we are interested in latent variable models with sparsity in
{y, z}, rather than fully visible networks with sparsity in
{y}. For the Gaussians, we avoid the need to resort to vari-
ational approximations of the posteriors of class member-
ships or present/absent links, which makes the method scal-
able to high-dimensional problems with latent variables.

The approach most closely related to ours is thesparse/low-
rank (SLR) decomposition of [6]. Their method relies
on the assumption of sparsity of the Gaussian conditional
p(y|z), wherey andz correspond to the data and latent vari-
ables respectively. They note that if the dimensionality of
the latent factors|z| is low, the marginal precision of the
observed variables decomposes into sparse and low-rank
positive semi-definite matrices. They proceed by defining a
convex optimization problem on the regularized likelihood
for the sparse and low-rank components. Because the ap-
proach does not explicitly parameterizep(y, z), it requires
solving a separate sparse matrix factorization problem if
a latent-space visualization is desired. The SLR approach
is elegant and computationally attractive; however, in con-
trast to our formulation, SLR is an optimization algorithm
rather than a probabilistic graphical model, where encoding
of the prior knowledge, extensions to mixtures, or inclusion
of the side information is not straightforward. Another re-
cent extension of GLASSO [37] allows for missing obser-
vations without systematically hidden variables. In contrast
to [37], our approach is applicable for both missing obser-
vations and hidden variables, and is extended to discrimi-
native non-Gaussian mixtures. We have demonstrated that
such extensions help to significantly improve on SLR [6]
and other Gaussian [5, 14] or Gaussian copula [28] meth-
ods in terms of test likelihoods.

The presence of the discrete latent states makes the opti-
mization surface of MSLICE and its copula version non-
convex. However, it may be efficiently optimized via a sim-

ple iterative procedure which we demonstrated empirically
to have excellent, robust modeling performance on test
data. Rather than formally analyzing the performance of
convex optimization methods for sub-optimal sparse Gaus-
sian models, our goal here was to introduce and empiri-
cally demonstrate the effectiveness of an intrinsically non-
convex approach that may be more effective for uncovering
structure in real-world financial data.

Our generic formulation of MSLICE is very simple, and
many interesting extensions touched upon only briefly will
be explored further in the future. At present, temporal in-
formation has only been included by conditioning on tem-
porally dependent features, such as technical indicators of
longer-term trends or market volatility. Our future work
will consider extensions of the model to non-Gaussian la-
tent field models with sparse structures in the augmented
space{y, z} that may be more suitable for modeling depen-
dencies between equity returns in financial applications.
The model will be extended to explicitly capture tempo-
ral and spatial dependencies between the latent factors and
observations, with sparsity constraints on transitions.

In this work, we selected the number of mixture compo-
nents by cross-validation. In the future we will develop in-
finite mixtures [33] of sparse latent field experts, and con-
sider other Bayesian nonparametric methods [17, 22] for
learning the number of latent factors. We will also investi-
gate priors favoring group sparsity, and consider more effi-
cient optimization approaches in the M-step. Applications
will focus on other areas of financial risk management in-
cluding portfolio construction, as well as other hot areas of
network modeling including biomarker discovery and pa-
tient stratification in personalized medicine.

Finally, we note that (M)SLICE combines the higher-
level problem of discovering an underlying structural form
with the lower-level problem of identifying the specific
instance of that structure that produces the best expla-
nation of the observations. Similarly to GLASSO, our
approach is applicable for a large-p small-n setting; it
is also tractable enough to be used for moderately high-
dimensional datasets with hidden variables and/or missing
observations. It may be effective for financial stress-testing
and knowledge discovery. We showed that when applied to
financial stress-testing, our method does not need to rely on
expensive human expertise. We also discussed an applica-
tion to the study of relationships between equity returns un-
der varying market regimes. More generally, the approach
may have important applications to systems biology, social
marketing, and financial risk minimization.
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