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Abstract

This paper describes a probabilistic framework for stugyissociations between
multiple genotypes, biomarkers, and phenotypic traite@resence of noise and
unobserved confounders for large genetic studies. Theefrenrk builds on sparse
linear methods developed for regression and modified heranferring causal
structures of richer networks with latent variables. Théhod is motivated by the
use of genotypes as “instruments” to infer causal assoastetween phenotypic
biomarkers and outcomes, without making the common réiggiassumptions of
instrumental variable methods. The method may be used feffective screening
of potentially interesting genotype-phenotype and bidk®aphenotype associa-
tions in genome-wide studies, which may have importantiicagibns for validat-
ing biomarkers as possible proxy endpoints for early-stdigecal trials. Where
the biomarkers are gene transcripts, the method can be osédd mapping of
quantitative trait loci (QTLs) detected in genetic linkegtadies. The method is
applied for examining effects of gene transcript levelsimliver on plasma HDL
cholesterol levels for a sample of sequenced mice from adgdaeous stock,
with ~ 10° genetic instruments and 47 x 103 gene transcripts.

1 Introduction

A problem common to both epidemiology and to systems biolisgy infer causal relationships
between phenotypic measurements (biomarkers) and diseésemes or quantitative traits. The
problem is complicated by the fact that in large bio-medstatlies, the number of possible genetic
and environmental causes is very large, which makes it ingfiiée to conduct exhaustive inter-
ventional experiments. Moreover, it is generally impokestb remove the confounding bias due to
unmeasured latent variables which influence associatietveden biomarkers and outcomes. Also,
in situations when the biomarkers are mRNA transcript Bvidle measurements are known to be
quite noisy; additionally, the number of unique candidateses may exceed the number of obser-
vations by several orders of magnitude (the> n problem). A fundamentally important practical
task is to reduce the number of possible causes of a trait tack imore manageable subset of can-
didates for controlled interventions. Developing an efiitiframework for addressing this problem
may be fundamental for overcoming bottlenecks in drug ammaknt, with possible applications in
the validation of biomarkers as causal risk factors, or bgaig proxies for clinical trials.

Whether or not causation may be inferred from observatiosia as been a matter of philosophical
debate. Pearl [28] argues that causal assumptions cannetrified unless one makes a recourse



to experimental control, and that there is nothing in thebphility distributionp(z,y) which can
tell whether a change im may have an effect op. Traditional discussions of causality are largely
focused on the question of identifiability, i.e. determiniets of graph-theoretic conditions when a
post-intervention distributiop(y|do(x)) may be uniquely determined from a pre-intervention dis-
tributionp(y, z, z) [27, 4, 32]. If the causal effects are shown to be identifiaihleir magnitudes can
be obtained by statistical estimation, which for common el®dften reduces to solving systems of
linear equations. In contrast, from the Bayesian persgedtie causality detection problem may
be viewed as that of model selection, where a madglL.,, is compared with\1,,_,,. The problem

is complicated by the likelihood-equivalence, where focteaetting of parameters of one model
there may exist a setting of parameters of the other givegto the identical likelihoods. However,
unless the priors are chosen in such a way gt ., and M, _., also have identical posteriors, it
may be possible to infer the direction of the arrow. The vikat the priors of likelihood-equivalent
models do not need to be set to ensure the equivalence of #herjoos is in contrast to e.g. [12]
(and references therein), but has been defended by Mackay43], Section 35).

In this paper we are leaving aside debates about the natwaueélity and focus instead on iden-
tifying a set of candidate causes for a large partially olesgtunder-determined genetic problem.
The approach builds on the instrumental variable methoalsviiere historically used in epidemi-
ological studies, and on approximate Bayesian inferencgparse linear latent variable models.
Specific modeling hypotheses are tested by comparing ajppatex marginal likelihoods of the cor-
responding direct, reverse, and pleiotropic models witth &ithout latent confounders, where we
follow [21] in allowing for flexible priors. The approach iargely motivated by the observation that
independent variables do not establish a causal relatibite wtrong unconfounded direct depen-
dencies retained in the posterior modes even under largesspss-inducing penalties may indicate
potential causality and suggest candidates for furthetrolded experiments.

2 Previous work

Inference of causal direction af on y is to some extent simplified if we assume existence of an
auxiliary variableg, such thaty’s effect onz may only be causal, angs effect ony may only

be throughz. The idea is exploited imstrumental variablanethods [3, 2, 29] which typically
deal with low-dimensional linear models, where the strerajtthe causal effect may be estimated
asw,_,, = cov(g,y)/cov(g,z). Note also that the hypothesized cause-outcome modelsasLch
My_py and M,_,,_., are no longer Markov-equivalent, i.e. it may be possibledieat an
appropriate model via likelihood-based tests. Selectipasibleinstrumenty may be difficult in
some domains; however, in genetic studies it may be podsildeploit as an instrument a measure
of genotypic variation. In quantitative genetics, suchligggtions of instrumental variable methods
have been termellendelian randomizatiofil5, 34]. In accordance with the requirements of the
classic instrumental variable methods, it is assumed tfedte of the genetic instrumepton the
biomarkerr are unconfounded, and that effects of the instrument onuttemey are mediated only
through the biomarker (i.e. thereris pleiotropy [17, 35]. The former assumption is grounded in the
laws of Mendelian genetics and is satisfied as long as papnlstratification has been adequately
controlled. However, the assumption of no hidden pleiotregverely restricts the application of this
approach, as most genotypic effects on complex traits areufiiciently well understood to exclude
pleiotropy as a possible explanation of an association. sTthe classical instrumental variable
argument is limited to biomarkers for which suitable noaigiropic instruments exist, and cannot
be easily extended to exploit studies with multiple bioneaskand genome-wide data.

A more general approach to exploiting genotypic variationntfer causal relationships between
gene transcript levels and quantitative traits has beealdgsd by Schadt et. al. [30] and subse-
guently extended (see e.g. [5]). They relax the assumpfiaro gleiotropy, but instead compare
models with and without pleiotropy by computing standakelihood-based scores. After filtering
to select a set of gene transcrigts; } that are associated with the traitand loci{g;} at which
genotypes have effects on transcript levelseach possible triad of marker locys transcriptz;
and traity is evaluated to compare three possible models: causat effeanscript on trait, reverse
causation, and a pleiotropic model (see Figuteft, (i)—(iii)). The support for these three models
is compared by a measure of model fit penalized by complegitiner Akaike’s Information Cri-
terion (AIC) [30], or the Bayesian Information Criterionl@®) [5]. Schadt et. al. [30] denote this
procedure as the “likelihood-based causality model selet{LCMS) approach. While the LCMS
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Figure 1: Left: (i—iii): Causal, reverse, and pleiotropic models of the LCMS apipr§a@]; (iv):
pleiotropic model with two genetic instrumentSenter; Possible arbitrariness of LCMS inference.
The histogram shows the difference of the AIC scores for thesal and reverse models for a fixed
biomarker and outcome, and various choices of loci from iptiee regions. Right: AIC scores

of the causal (top) and reverse (bottom) models for eactcehadiinstrumeny; (the straight lines
link the scores for a fixed choice gf). Scores were centered relative to those of the pleiotropic
model. Biomarker and outcome are liver expression€y27bland plasma HDL measurements
for heterogeneous mice. Based on the choiag afither causal or reverse explanations are favored.

and related methods [30, 5] relax the assumption of no higdisintropy of the classic Mendelian
randomization method, they have three key limitationsstiaffects of loci and biomarkers on out-
comes are not modeled jointly, so widely varying inferengespossible depending on the choice
of the triads{g;, ;, y}. Figure 1center, rightcompares differences in the AIC scores for the causal
and reverse models constructed for a fixed biomarker andm#cand for various choices of the
genetic instruments from the predictive region. Dependinghe choice of instrumeny;, either
causal or reverse explanations are favored. A second kéafion is that the LCMS method does
not allow for dependencies between multiple biomarkersasueement noise, or latent variables
(such as unobserved confounders of the biomarker-outceste@tions). Thus, for instance, with-
out allowance for noise in the biomarker measurements,zeon-conditional mutual information
I(g:,y|x;) will be interpreted as evidence of pleiotropy or reversesation even when the relation
between the underlying biomarker and outcome is causalo, Ate method is not Bayesian (the
BIC score is only a crude approximation to the Bayesian mroefor model selection).

One extension of the classic instrumental variable methadseen proposed by [4], who described
graph-theoretic conditions which need to be satisfied iriofdr parameters of edges — y to

be identifiable by solving a system of linear equations; hamethey focus on the identifiability
problem rather than on addressing a large practical unetermined task with latent variables.
For example, their method does not allow for an easy integraif unmeasured confounders with
unknown correlations with the intermediate and outcoméat#ars. Another approach to modeling
joint effects of genetic loci and biomarkers (gene expoassgiwas described by [41]. They modeled
the expression measurements as three ordered levels, athé lased greedy search over model
structures from multiple starting points, to find modelshaliigh BIC scores. Though applicable
for large-scale studies, the approach does not allow folsareanent noise or latent variables (and
looses information by using categorical measurementsg VEst majority of other recent model
selection and structure learning methods from machinaileguiterature are also either not easily
extended to include latent confounders (e.g. [16], [192])2or applicable only for dealing with
relatively low-dimensional problems with abundant datg.(§33] and references therein).

3 Methods

To address the problem of causal discovery in large bio-ca¢gtudies, we need a unified frame-
work for modeling relations between genotypes, biomarkamd outcomes that is computationally
tractable to handle a large number of variables. Our appreatends LCMS and the instrumental
variable methods by the joint modeling of effects of genleiit and biomarkers, and by allowing for
both pleiotropic genotypic effects and latent variablex tienerate couplings between biomarkers
and confound the biomarker-outcome associations. ltyelieBayesian modeling of linear associ-
ations between the modeled variables, with sparsenessiitglpriors on the linear weights. The
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Figure 2:Left: SPIV structure. Filled/clear nodes correspond to obsétatent variablesRight:
log Bayes factor oftM,._._., and M,_,, as a function of empirical correlationsand ~; for
n = 100 observationsy? = 02 = o7 = 1, |z| = [y| = |z| = 1 andv, = 0, on thelog,, scale. For

intermediatey,'s and high empirical correlations, there is a strong peafee for the causal model.

Bayesian framework allows prior biological informationtie included if available: for instance,
cis-acting genotypic effects on transcript levels areljike be stronger and less pleiotropic than
trans-acting effects on transcript levels. It also offerigarous approach to model comparison, and
is particularly attractive for addressing under-deteedigenetics problem® (> n). The method
builds on automatic relevance determination approachgs[@0], [25], [37]) and adaptive shrink-
age (e.g. [36], [8], [42]). Here it is used in the context ofige multi-factor instrumental variable
analysis in the presence of unobserved confounders, mpigtand noise.

Model Parameterization

Our sparse instrumental variablasodel (SP1V) is specified with four classes of variables:agen
typic and environmental covariatgse R/8!, phenotypic biomarkers € R/, outcomesy € R/,
and latent factorsy, . .., z,;. The dimensionality of the latent factojg is fixed at a moderately
high value (extraneous dimensions will tend to be prunectutite sparse prior). The latent factors
z play two major roles: they represent the shared structuredss groups of biomarkers, and con-
found biomarker-outcome associations. The biomarkexsd outcomes are specified as hidden
variables inferred from noisy observationg R'*l andy € RV (note thatx| = |x|, |J| = |y|). The
effects of genotype on biomarkers and outcome are assunhbeduitoconfounded. Pleiotropic effects
of genotype (effects on outcome that are not mediated thrthg phenotypic biomarkers) are ac-
counted for by an explicit parameterizationyg¥|g, x, z). Graphical representation of the model is
shown on Figure 2I¢ft). It is clear that the SPIV structure extends that of therimaental variable
methods [2, 3, 29] by allowing for the pleiotropic links, aaldo extends the pleiotropic model of
Schadt et. al. [30] (Figure [&ft (iii)) by allowing for multiple instruments and latent variables

All the likelihood terms ofp(x, %, y, ¥, z|g) are linear Gaussians with diagonal covariances
x=UTg+Viz+e,, y:WTx—&—sz—i—Wng—i—ey, X = Ax + ez, Q)

andy =y + €y, wheree; ~ N(O, ‘I’y), ey ~ ./\/(0, ‘I’y), ey ~ ./\/(0, ‘I’y), ez ~ N(O,‘I’;(), z~
N(0,%,), W € RXXIM w, e REXM W, e RlexI| v e REIXIX Y e RIe*X are regression
coefficients (factor loadings) — for clarity, we assume thtads centeredA € R¥*Ix| has a banded
structure (accounting for possible couplings of the nedgiriy microarray measurements).

Prior Distribution

All model parameters are specified as random variables withr distributions. For computa-
tional convenience, the variance components of the didgovariancest,, ¥y, etc. are specified
with inverse Gamma priors~1(a;, b;), with hyperparameters; andb; fixed at values motivat-
ing the prior beliefs about the projection noise (often ke to lab technicians collecting trait or
biomarker measurements). One way to view the latent conlfensz is as missing genotypes or
environmental covariates, so that prior variances of thentafactors are peaked at values repre-
sentative of the empirical variances of the instrument&mpirically, the choice of priors on the
variance components appears to be relatively unimpomadtpther choices may be considered [9].



The considered choice of a sparseness-inducing prior anersV, W, W, etc. is a product
of zero-mean Laplace and zero-mean normal distributions

lw|

p(W) X H‘CU)L (0771)'/\/71%(0772)7 (2)
=1

L, (0,71) o< exp{—71|w;|}, andNy, (0,v2) o exp{—y2w?}. Due to the heavy tails of the Lapla-
cianL,,,, the priorp(w) is flexible enough to capture large associations even iféineyare. Higher
values ofy; give a stronger tendency to shrink irrelevant weights tmzer It is possible to set
different~; parameters for different linear weights (e.g. for the cisd &rans-acting effects); how-
ever, for clarity of this presentation we shall only use ebglgparametet;;. The isotropic Gaussian
component with the inverse variange contributes to the grouping effect (see [42], Theorem 1).
The considered family of priors (2) induces better conaisteproperties [40] than the commonly
used Laplacians [36, 9, 39, 26, 31]. It has also been showrijatlimportant associations between
variables may be recovered even for severely under-detedrproblemsy > n) common in ge-
netics. The SPIV model witp(w) defined as in (2) generalizes LASSO and elastic net regressio
[36, 42]. As a special case, it also includes sparse comditifactor analysis. Other sparse priors
on the weights, such as Studentspike-and-slab”, or inducing,, ., penalties tend to result in less
tractable posteriors even for linear regression [10, 3/AvBjch also motivates the choice (2).

Some additional intuition of the influence of the sparseninthe causal inference may be gained
by numerically comparing the marginal likelihoods of therktav-equivalent models with and with-
out confoundersm,.._.,,, M,_.,. (Comparison of these models is of particular importance in
epidemiology, because while the temporal data may oftervaiable for distinguishing direct and
reverse modeld,_., andM,_. ., it is generally difficult to ensure that there is no confoimggl.
Figure 2 shows that when the empirical correlations arengtemdy, is at intermediate levels, there
is a strong preference for a causal model. This is becausdtéraative model with the confounders
will have more parameters, and the weights will need to lgelafand therefore more strongly pe-
nalized by the prior) in order to lead to the same likelihoodté that forvar(z) = var(y) = 1, the
likelihood-equivalence is achieved far= vw,, |w| < 1). Larger values ofy; will tend to strongly
penalize all the weights, which makes the models largelistirdjuishable. Also, as the number of
genetic instruments grows, evidence in favor of the causpleiotropic model will be less depen-
dent upon the priors on model parameters. For instance,twilgenotypic variables that perturb
a single transcript, the causal model has three adjustaléereters, but the pleiotropic model has
five (see Figure 1eft, (iv)). Where several genotypic variables perturb a single tripisand the
causal model fits the data nearly as well as the pleiotropidainthe causal model will have higher
marginal likelihood under almost any plausible prior, heszathe slightly better fit of the pleiotropic
model will be outweighed by the penalty imposed by severatheadjustable parameters.

Inference

While the choice of prior (2) encourages sparse solutiomeakes exact inference of the posterior
parameterg(0|D) analytically intractable. The most efficient approach isdghon the maximum-
a-posteriori MAP) treatment ([36], [9]), which reduces to solving the optation problem

Orrap = argmax {logp ({y}, {X}|{g}. 0) + log p(6) } 3)

for the joint parameterg, where the latent variables have been integrated out. Katele MAP
solution for SPIV may also be easily derived for the semiesuijsed case where the biomarker
and outcome vectors are only partially observed. Comparedhter approximations of inference
in sparse linear models based e.g. on sampling or expattptmpagation [26, 31], the MAP
approximation allows for an efficient handling of very langetworks with multiple instruments
and biomarkers, and makes it straightforward to incormolatent confounders. Depending on the
choice of the global sparseness and grouping hyperparesnete., the obtained solutions for the
weights will tend to be sparse, which is also in contrast édtitl inference methods. In high dimen-
sions in particular, the parsimony induced by the poiniresstes will facilitate structure discovery
and interpretations of the findings.

One way to optimize (3) is by an EM-like algorithm. For examphe fixed-point update far; €
Rel linking biomarkerz; with the vector of instrumenisis easily expressed as

) -1
il = (676 + 02 (U 4 3lig)) (67 x) — GT(@2wi), @)
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Figure 3: Top: SPIV for artificial datasets. Left/right plots show typiaplications for the high
and low observation noisef = 0.25 ando2 = 0.05 respectively). Top and bottom rows of each
Hinton diagram correspond to the ground truth and the MARyltsU (1-18),W (19-21) W, (22—
27). Bottom: SPIV for a genome-wide study of causal effects on HDL in legeneous stock mice.
Left/right plots show maximum a-posteriori weigltts; 4 p and the mutual informatiol(z;, yle)
between the unobserved biomarkers and outcome evaluatedtire model at),; 4 », under the
joint Gaussian assumption. A cluster of pleiotropic linkeadhromosome 1 at about 173 MBP is
consistent with biology. The biomarker with the strongestanfounded effect on HDL €yp27b1
Transcripts that are most predictive of HDL through theiké with pleiotropic genetic markers on
chrom 1 ard&Japl, Rgs5, ApoazndNrli3. Parameters; » have been obtained by cross-validation.

whereG € R"*I¢l is the design matrix,U; ) = 0xt/|usi| Yk, 1 € [1, |g]]NZ, x; € R, Z € R**I2,

vi € Rl ando? = (U,);;. The expectations) are computed with respect tg.|{x}, {7}, {g}),
which for Q) are easily expressed in the closed form. Theisesxpressed analogously, and ex-
tensions to the partially observed cases are straightaimtwFaster (although more heuristic) al-
ternatives may be used for speeding up the M-step (e.g. [[file hyperparameters may be set
by cross-validation, marginalized out by specifying a hypeor, or set heuristically based on the
expected number of links to be retained in the posterior mddace a sparse representation is
produced by pruning irrelevant dimensions, more compunatly-intensive inference methods for
the full posterior (such as expectation propagation or MGMfay be used in the resulting lower-
dimensional model if needed. After fitting SPIV to data, faimypotheses tests were performed by
comparing the marginal likelihoods of the specific modeldffie retained instruments, biomarkers,
and target outcomes. These were evaluated by the Laplacexapption atf; 4 p (e.9. [20]).

4 Results

Artificial data: We applied SPIV to several simulated datasets, and comsaecific modeling
hypotheses for the biomarkers retained in the posteriorasiotihe structures were consistent with
the generic SPIV model, with all non-zero weights samplenth(O 1). Figure 3 (top) shows
typical results for the high/low observation noisé (a~ = 02 = 0.25/0.05). Note excellent sign-
consistency of the results for the more important factoepasate simulations showed robustness
under multiple EM runs and under- or over-estimation of tlue thumber of confounders. Sub-
sequent testing of the specific modeling hypotheses for the&t important factors resulted in the
correct discrimination of causal and confounded assaciatin~86% of cases.

Genome-wide study of HDL cholesterol in mice:To demonstrate our method for a large-scale
practical application, we examined effects of gene trapsdevels in the liver on plasma high-
density lipoprotein (HDL) cholesterol levels for a micerfia heterogeneous stock. The genetic
factors influencing HDL in mice have been well explored inlbigy e.g. by Valdar et. al. [38].
The gene expression data was collected and preprocess&d]bwho have kindly agreed to share
a part of their data. Breeding pairs for the stock were obthiat 50 generations after the stock



foundation. At each of the 12500 marker loci, genotypes weeeribed by 8-D vectors of expected
founder ancestry proportions inferred from the raw marlkeragypes by an HMM-based reconstruc-
tion method [23]. Mouse-specific covariates included agksax, which were used to augment the
set of genetic instruments. The full set of phenotypic bidmes consisted of 47429 transcript lev-
els, appropriately transformed and cleaned. Availabla @datluded 260 animals. Before applying
our method, we decreased the dimensionality of the gerestitifes and RNA expressions by using
a combination of seven feature (subset) selection methi@d®d on applications of filters, greedy
(step-wise) regression, sequential approximations ofrthtual information between the retained
set and the outcome of interest, and applications of reigressethods with LASSO and elastic
net (EN) shrinkage priors for the genotypesobserved biomarkers and observed HDL mea-
surementy. For the LASSO and EN methods, global hyper-parameters al#ened by 10-fold
cross-validation. Note that feature selection is unavd&léor genome-wide studies using gene ex-
pressions as biomarkers. Indeed, the considered cas&Xfl0°) instruments and 47K biomarkers
would give rise to> O(10°) interaction weights, which is expensive to analyze or evegpkin
memory. After applying subset selection methods, SPIV wpially applied to subsets of data
with ~ O(10°) loci-biomarker interactions.

The results of the SPIV analysis of this dataset are showniguré-3 (bottom). Théottom left
plot shows maximum a-posteriori weights; 4 » computed by running the EM-like optimization
procedure to convergence from 20 random initializationsr & model with latent variables and
about30, 000 weights, each run took approximately 10 minutes of exeoutime (only weakly
optimized Matlab code, simple desktop). The parameigrswere obtained by 10-fold CV. Note
that only a fraction of the variables remains in the posterla this case and for the considered
sparseness-inducing priors, no hidden confounders appéave strong effects on the outcome in
the posterior. The spikes of the pleiotropic activations in sex chromos@® and around chromo-
some 1 are consistent with the biological knowledge [38]e Blomarker with the strongest direct
effect on HDL (computed as the mean MAP weight: x; — y divided by its standard deviation
over multiple runs, where each mean weight exceeds a tHisithe expression d€yp27bl(gene
responsible for vitamin D metabolism). Knockout of figp27blgene in mice has been shown to
alter body fat stores [24], which might be expected to affél_ cholesterol levels. Recently it
has also been shown that quantitative trait locus for ctaud vitamin D levels in humans includes
a gene that codes for the enzyme that synthesizes cholddferé subsequent comparison of 18
specific reverse, pleiotropic, and causal model<igp27b1 HDL, and the whole vector of retained
genetic instruments (known to be causal by definition) stibavslightly stronger evidence in favor
of the reverse hypothesis without latent confounders (tithratio of Laplace approximations of
the marginal likelihoods of reverses causal models ok 1.95 4+ 0.27). This is in contrast to the
LCMS where the results are strongly affected by the choianahstrument (Figure fight shows
the results folCyp27b1 HDL, and the same choice of instruments).

To demonstrate an application to gene fine-mapping stuéiigsire 3 pottom righ) shows the
approximate mutual informatiof(z;, yle = {age, sex}) between the underlying biomarkers and
unobserved HDL levels expressed from the modelak p. The mutual information takes into
account not only the strength of the direct effectpbny, but also associations with the pleiotropic
instruments, strengths of the pleiotropic effects, andeddpncies between the instruments. Under
the as-if Gaussian assumptiditz;, y;|0am ap) = log(o, o3,) —log(oy 02, — oy ,.), where

o2 = [|Z12(Uw; +wy) )[% + [ €32 (Vw; + w2+ w] Bow; + Ty, (5)

with the rest expressed analogously. HEYg, € Rl&lxlel is the empirical covariance of the instru-
mentsw; € R¥, w,, € R, andw,, € RI¢l are the MAP weights of the couplings gf with the
biomarkers, confounders, and genetic instruments regpctWhen the outcome is HDL, the ma-
jority of predictive transcripts are fine-mapped to a smadfion on chromosome 1 which includes
Uap1l, Rgs5Apoa2 andNrli3. The informativeness of these genes about the HDL chotédsten-
not be inferred simply from correlations between the meaigene expression and HDL levels;
for example, when ranked in accordanceptdz;, §|age, sex), the top 4 genes have the rankings

!No confounder effects in the posterior mode for the consideredis specific to the considered mouse
HDL dataset, which shows relatively strong correlations between theursghbiomarkers and the outcome.
An application of SPIV to proprietary human data for a study of effectgitaimins and calcium levels on
colorectal cancer (which we are not yet allowed to publish) showedsteyng effects of the latent confounders.



of 838, 961, 6284, and 65 respectively. The findings are atdodically plausible and consistent
with high-profile biological literature (with associat®hetweermpoa2and HDL described in [38],
and strong links oRgs5to a genomic region strongly associated with metaboli¢gidiscussed in
[5], while Nr1i3 andUapl are their neighbors on chromosome 1 withinl M bp). Note that the
couplings are via the links with the pleiotropic genetic kesis on chromosome 1. Adjusting for sex
and age prior to performing feature selection and inferelid@ot significantly change the results.

The results reported here appear to be stable for differaites of feature selection methods, data
adjustments, and algorithm runs. We note, however, thigrdiiit results may potentially be obtained
based on the choice of animal populations and/or procesditige biomarker (gene expression)
measurements. Details of the data collection, microarragrnocessing, and feature selection, along
with the detailed findings for other biomarkers and pheniotgutcomes will be made available
online. Definitive confirmation of these relationships wbrgquire gene knock-out experiments.

5 Discussion and extensions

In large-scale genetic and bio-medical studies, we aredegipractical task of reducing a huge set
of candidate causes of complex traits to a more manageddetsof candidates where experimen-
tal control (such as gene knockout experiments or biomakemations) may be performed. SPIV
performs the screening of interesting biomarker-pherogmd genotype-biomarker-phenotype as-
sociations by exploiting the maximum-a-posteriori infere in a sparse linear latent variable model.
Additional screening is performed by comparing approxamaarginal likelihoods of specific mod-
eling hypotheses, including direct, reverse, and plegtronodels with and without confounders,
which (under the assumption of no “prior equivalence”) mesve as an additional test of possible
causation [21]. Intuitively, the approach is motivated hg bbservation that while independence
of variables implies that they are not in a causal relatioprederence for an unconfounded causal
model may indicate possible causality and require furtbetrolled experiments.

Technically, SPIV may be viewed as an extension of LASSO dastie net regression which al-
lows for latent variables and pleiotropic dependencies.lé\tig@ing particularly attractive for genetic
studies, SPIV or its modifications may potentially be appfier addressing more general structure
learning tasks. For example, when applied iterativelyV3Ray be used to guide search over richer
model structures (where a greedy search over parent nodeglésed by a continuous optimiza-
tion problem which combines subset selection and regnessithe presence of latent variables),
which may be used for structure learning problems. Othesrestons of the framework could in-
volve hybrid (discrete- and real-valued) outcomes withlimear/nongaussian likelihoods. Also,
as mentioned earlier, once sparse representations aracgehdby the MAP inference, it may be
possible to utilize more accurate approximations of thergrice applicable for the induced sparse
structures [6]. Also note that sparse priors on the lineaghte tend to give rise to sparse covariance
matrices. A potentially interesting alternative may irweoh direct estimation of conditional preci-
sion matrices with a sparse group penalty. While SPIV attentptocus the attention dmportant
biomarkers establishing strong direct associations wighpghenotypes, modeling of the precisions
may be used for filtering outnimportantfactors (conditionally) independent of the outcome vari-
ables. Our future work will involve a direct estimation oktkparse conditional precision matrix
Zx‘y;g of the biomarkers, outcomes, and unmeasured confoundees (dpe instruments), through
latent variable extensions of the recently proposed geapphiASSO and related methods [11, 18].

The key purpose of this paper is to draw attention of the nmeclgarning community to the prob-
lem of inferring causal relationships between phenotypdasurements and complex traits (disease
risks), which may have tremendous implications in epidéogp and systems biology. Our specific
approach to the problem is inspired by the ideas of instruaheariable analysis commonly used
in epidemiological studies, which we have extended to ptgpaddress situations when the ge-
netic variables may be direct causes of the hypothesizedmés. The sparse instrumental variable
framework (SPIV) overcomes limitations of the likelihobdsed LCMS methods often used by ge-
neticists, by modeling joint effects of genetic loci andrbarkers in the presence of noise and latent
variables. The approach is tractable enough to be used &tigestudies with tens of thousands of
variables. It may be used for identifying specific genes @ased with phenotypic outcomes, and
may have wide applications in identification of biomarkesgassible targets for interventions, or
as proxy endpoints for early-stage clinical trials.
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