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Abstract

This paper describes a probabilistic framework for studying associations between
multiple genotypes, biomarkers, and phenotypic traits in the presence of noise and
unobserved confounders for large genetic studies. The framework builds on sparse
linear methods developed for regression and modified here for inferring causal
structures of richer networks with latent variables. The method is motivated by the
use of genotypes as “instruments” to infer causal associations between phenotypic
biomarkers and outcomes, without making the common restrictive assumptions of
instrumental variable methods. The method may be used for aneffective screening
of potentially interesting genotype-phenotype and biomarker-phenotype associa-
tions in genome-wide studies, which may have important implications for validat-
ing biomarkers as possible proxy endpoints for early-stageclinical trials. Where
the biomarkers are gene transcripts, the method can be used for fine mapping of
quantitative trait loci (QTLs) detected in genetic linkagestudies. The method is
applied for examining effects of gene transcript levels in the liver on plasma HDL
cholesterol levels for a sample of sequenced mice from a heterogeneous stock,
with ∼ 105 genetic instruments and∼ 47 × 103 gene transcripts.

1 Introduction

A problem common to both epidemiology and to systems biologyis to infer causal relationships
between phenotypic measurements (biomarkers) and diseaseoutcomes or quantitative traits. The
problem is complicated by the fact that in large bio-medicalstudies, the number of possible genetic
and environmental causes is very large, which makes it implausible to conduct exhaustive inter-
ventional experiments. Moreover, it is generally impossible to remove the confounding bias due to
unmeasured latent variables which influence associations between biomarkers and outcomes. Also,
in situations when the biomarkers are mRNA transcript levels, the measurements are known to be
quite noisy; additionally, the number of unique candidate causes may exceed the number of obser-
vations by several orders of magnitude (thep ≫ n problem). A fundamentally important practical
task is to reduce the number of possible causes of a trait to a much more manageable subset of can-
didates for controlled interventions. Developing an efficient framework for addressing this problem
may be fundamental for overcoming bottlenecks in drug development, with possible applications in
the validation of biomarkers as causal risk factors, or developing proxies for clinical trials.

Whether or not causation may be inferred from observational data has been a matter of philosophical
debate. Pearl [28] argues that causal assumptions cannot beverified unless one makes a recourse
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to experimental control, and that there is nothing in the probability distributionp(x, y) which can
tell whether a change inx may have an effect ony. Traditional discussions of causality are largely
focused on the question of identifiability, i.e. determining sets of graph-theoretic conditions when a
post-intervention distributionp(y|do(x)) may be uniquely determined from a pre-intervention dis-
tributionp(y, x, z) [27, 4, 32]. If the causal effects are shown to be identifiable, their magnitudes can
be obtained by statistical estimation, which for common models often reduces to solving systems of
linear equations. In contrast, from the Bayesian perspective, the causality detection problem may
be viewed as that of model selection, where a modelMx→y is compared withMy→x. The problem
is complicated by the likelihood-equivalence, where for each setting of parameters of one model
there may exist a setting of parameters of the other giving rise to the identical likelihoods. However,
unless the priors are chosen in such a way thatMx→y andMy→x also have identical posteriors, it
may be possible to infer the direction of the arrow. The view that the priors of likelihood-equivalent
models do not need to be set to ensure the equivalence of the posteriors is in contrast to e.g. [12]
(and references therein), but has been defended by MacKay (see [21], Section 35).

In this paper we are leaving aside debates about the nature ofcausality and focus instead on iden-
tifying a set of candidate causes for a large partially observed under-determined genetic problem.
The approach builds on the instrumental variable methods that were historically used in epidemi-
ological studies, and on approximate Bayesian inference insparse linear latent variable models.
Specific modeling hypotheses are tested by comparing approximate marginal likelihoods of the cor-
responding direct, reverse, and pleiotropic models with and without latent confounders, where we
follow [21] in allowing for flexible priors. The approach is largely motivated by the observation that
independent variables do not establish a causal relation, while strong unconfounded direct depen-
dencies retained in the posterior modes even under large sparseness-inducing penalties may indicate
potential causality and suggest candidates for further controlled experiments.

2 Previous work

Inference of causal direction ofx on y is to some extent simplified if we assume existence of an
auxiliary variableg, such thatg’s effect onx may only be causal, andg’s effect ony may only
be throughx. The idea is exploited ininstrumental variablemethods [3, 2, 29] which typically
deal with low-dimensional linear models, where the strength of the causal effect may be estimated
aswx→y = cov(g, y)/cov(g, x). Note also that the hypothesized cause-outcome models suchas
Mg→x→y andMg→y→x are no longer Markov-equivalent, i.e. it may be possible to select an
appropriate model via likelihood-based tests. Selecting aplausibleinstrumentg may be difficult in
some domains; however, in genetic studies it may be possibleto exploit as an instrument a measure
of genotypic variation. In quantitative genetics, such applications of instrumental variable methods
have been termedMendelian randomization[15, 34]. In accordance with the requirements of the
classic instrumental variable methods, it is assumed that effects of the genetic instrumentg on the
biomarkerx are unconfounded, and that effects of the instrument on the outcomey are mediated only
through the biomarker (i.e. there isno pleiotropy) [17, 35]. The former assumption is grounded in the
laws of Mendelian genetics and is satisfied as long as population stratification has been adequately
controlled. However, the assumption of no hidden pleiotropy severely restricts the application of this
approach, as most genotypic effects on complex traits are not sufficiently well understood to exclude
pleiotropy as a possible explanation of an association. Thus the classical instrumental variable
argument is limited to biomarkers for which suitable non-pleiotropic instruments exist, and cannot
be easily extended to exploit studies with multiple biomarkers and genome-wide data.

A more general approach to exploiting genotypic variation to infer causal relationships between
gene transcript levels and quantitative traits has been developed by Schadt et. al. [30] and subse-
quently extended (see e.g. [5]). They relax the assumption of no pleiotropy, but instead compare
models with and without pleiotropy by computing standard likelihood-based scores. After filtering
to select a set of gene transcripts{xj} that are associated with the traity, and loci{gi} at which
genotypes have effects on transcript levelsxj , each possible triad of marker locusgi, transcriptxj

and traity is evaluated to compare three possible models: causal effect of transcript on trait, reverse
causation, and a pleiotropic model (see Figure 1left, (i)–(iii)). The support for these three models
is compared by a measure of model fit penalized by complexity:either Akaike’s Information Cri-
terion (AIC) [30], or the Bayesian Information Criterion (BIC) [5]. Schadt et. al. [30] denote this
procedure as the “likelihood-based causality model selection” (LCMS) approach. While the LCMS
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Figure 1: Left: (i–iii): Causal, reverse, and pleiotropic models of the LCMS approach [30]; (iv):
pleiotropic model with two genetic instruments.Center:Possible arbitrariness of LCMS inference.
The histogram shows the difference of the AIC scores for the causal and reverse models for a fixed
biomarker and outcome, and various choices of loci from predictive regions. Right: AIC scores
of the causal (top) and reverse (bottom) models for each choice of instrumentgi (the straight lines
link the scores for a fixed choice ofgi). Scores were centered relative to those of the pleiotropic
model. Biomarker and outcome are liver expressions ofCyp27b1and plasma HDL measurements
for heterogeneous mice. Based on the choice ofgi, either causal or reverse explanations are favored.

and related methods [30, 5] relax the assumption of no hiddenpleiotropy of the classic Mendelian
randomization method, they have three key limitations. First, effects of loci and biomarkers on out-
comes are not modeled jointly, so widely varying inferencesare possible depending on the choice
of the triads{gi, xj , y}. Figure 1center, rightcompares differences in the AIC scores for the causal
and reverse models constructed for a fixed biomarker and outcome, and for various choices of the
genetic instruments from the predictive region. Dependingon the choice of instrumentgi, either
causal or reverse explanations are favored. A second key limitation is that the LCMS method does
not allow for dependencies between multiple biomarkers, measurement noise, or latent variables
(such as unobserved confounders of the biomarker-outcome associations). Thus, for instance, with-
out allowance for noise in the biomarker measurements, non-zero conditional mutual information
I(gi, y|xj) will be interpreted as evidence of pleiotropy or reverse causation even when the relation
between the underlying biomarker and outcome is causal. Also, the method is not Bayesian (the
BIC score is only a crude approximation to the Bayesian procedure for model selection).

One extension of the classic instrumental variable methodshas been proposed by [4], who described
graph-theoretic conditions which need to be satisfied in order for parameters of edgesxi → y to
be identifiable by solving a system of linear equations; however, they focus on the identifiability
problem rather than on addressing a large practical under-determined task with latent variables.
For example, their method does not allow for an easy integration of unmeasured confounders with
unknown correlations with the intermediate and outcome variables. Another approach to modeling
joint effects of genetic loci and biomarkers (gene expressions) was described by [41]. They modeled
the expression measurements as three ordered levels, and used a biased greedy search over model
structures from multiple starting points, to find models with high BIC scores. Though applicable
for large-scale studies, the approach does not allow for measurement noise or latent variables (and
looses information by using categorical measurements). The vast majority of other recent model
selection and structure learning methods from machine learning literature are also either not easily
extended to include latent confounders (e.g. [16], [19], [22]), or applicable only for dealing with
relatively low-dimensional problems with abundant data (e.g. [33] and references therein).

3 Methods

To address the problem of causal discovery in large bio-medical studies, we need a unified frame-
work for modeling relations between genotypes, biomarkers, and outcomes that is computationally
tractable to handle a large number of variables. Our approach extends LCMS and the instrumental
variable methods by the joint modeling of effects of geneticloci and biomarkers, and by allowing for
both pleiotropic genotypic effects and latent variables that generate couplings between biomarkers
and confound the biomarker-outcome associations. It relies on Bayesian modeling of linear associ-
ations between the modeled variables, with sparseness-inducing priors on the linear weights. The
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Figure 2:Left: SPIV structure. Filled/clear nodes correspond to observed/ latent variables.Right:
log Bayes factor ofMx←z→y andMx→y as a function of empirical correlationsρ and γ1 for
n = 100 observations,σ2

z = σ2
x = σ2

y = 1, |x| = |y| = |z| = 1 andγ2 = 0, on thelog10 scale. For
intermediateγ1’s and high empirical correlations, there is a strong preference for the causal model.

Bayesian framework allows prior biological information tobe included if available: for instance,
cis-acting genotypic effects on transcript levels are likely to be stronger and less pleiotropic than
trans-acting effects on transcript levels. It also offers arigorous approach to model comparison, and
is particularly attractive for addressing under-determined genetics problems (p ≫ n). The method
builds on automatic relevance determination approaches (e.g. [20], [25], [37]) and adaptive shrink-
age (e.g. [36], [8], [42]). Here it is used in the context of sparse multi-factor instrumental variable
analysis in the presence of unobserved confounders, pleiotropy, and noise.

Model Parameterization

Our sparse instrumental variablesmodel (SPIV) is specified with four classes of variables: geno-
typic and environmental covariatesg ∈ R

|g|, phenotypic biomarkersx ∈ R
|x|, outcomesy ∈ R

|y|,
and latent factorsz1, . . . , z|z|. The dimensionality of the latent factors|z| is fixed at a moderately
high value (extraneous dimensions will tend to be pruned under the sparse prior). The latent factors
z play two major roles: they represent the shared structure between groups of biomarkers, and con-
found biomarker-outcome associations. The biomarkersx and outcomesy are specified as hidden
variables inferred from noisy observationsx̃ ∈ R

|x̃| andỹ ∈ R
|ỹ| (note that|x̃| = |x|, |ỹ| = |y|). The

effects of genotype on biomarkers and outcome are assumed tobe unconfounded. Pleiotropic effects
of genotype (effects on outcome that are not mediated through the phenotypic biomarkers) are ac-
counted for by an explicit parameterization ofp(y|g, x, z). Graphical representation of the model is
shown on Figure 2 (left). It is clear that the SPIV structure extends that of the instrumental variable
methods [2, 3, 29] by allowing for the pleiotropic links, andalso extends the pleiotropic model of
Schadt et. al. [30] (Figure 1left (iii) ) by allowing for multiple instruments and latent variables.

All the likelihood terms ofp(x, x̃, y, ỹ, z|g) are linear Gaussians with diagonal covariances

x = UT g + VT z + ex, y = WT x + WT
z z + WT

g g + ey, x̃ = Ax + ex̃, (1)

and ỹ = y + eỹ, whereex̃ ∼ N (0,Ψy), ey ∼ N (0,Ψy), eỹ ∼ N (0,Ψỹ), ex̃ ∼ N (0,Ψx̃), z ∼
N (0,Ψz), W ∈ R

|x|×|y|, Wz ∈ R
|z|×|y|, Wg ∈ R

|g|×|y|, V ∈ R
|z|×|x|, U ∈ R

|g|×|x| are regression
coefficients (factor loadings) – for clarity, we assume the data is centered.A ∈ R

|x|×|x| has a banded
structure (accounting for possible couplings of the neighboring microarray measurements).

Prior Distribution

All model parameters are specified as random variables with prior distributions. For computa-
tional convenience, the variance components of the diagonal covariancesΨy, Ψỹ, etc. are specified
with inverse Gamma priorsΓ−1(ai, bi), with hyperparametersai and bi fixed at values motivat-
ing the prior beliefs about the projection noise (often available to lab technicians collecting trait or
biomarker measurements). One way to view the latent confoundersz is as missing genotypes or
environmental covariates, so that prior variances of the latent factors are peaked at values repre-
sentative of the empirical variances of the instrumentsg. Empirically, the choice of priors on the
variance components appears to be relatively unimportant,and other choices may be considered [9].
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The considered choice of a sparseness-inducing prior on parametersW, Wz, Wg, etc. is a product
of zero-mean Laplace and zero-mean normal distributions

p(w) ∝

|w|
∏

i=1

Lwi
(0, γ1)Nwi

(0, γ2), (2)

Lwi
(0, γ1) ∝ exp{−γ1|wi|}, andNwi

(0, γ2) ∝ exp{−γ2w
2
i }. Due to the heavy tails of the Lapla-

cianLwi
, the priorp(w) is flexible enough to capture large associations even if theyare rare. Higher

values ofγ1 give a stronger tendency to shrink irrelevant weights to zero. It is possible to set
differentγ1 parameters for different linear weights (e.g. for the cis- and trans-acting effects); how-
ever, for clarity of this presentation we shall only use a global parameterγ1. The isotropic Gaussian
component with the inverse varianceγ2 contributes to the grouping effect (see [42], Theorem 1).
The considered family of priors (2) induces better consistency properties [40] than the commonly
used Laplacians [36, 9, 39, 26, 31]. It has also been shown [14] that important associations between
variables may be recovered even for severely under-determined problems (p ≫ n) common in ge-
netics. The SPIV model withp(w) defined as in (2) generalizes LASSO and elastic net regression
[36, 42]. As a special case, it also includes sparse conditional factor analysis. Other sparse priors
on the weights, such as Student-t, “spike-and-slab”, or inducingLq<1 penalties tend to result in less
tractable posteriors even for linear regression [10, 37, 8], which also motivates the choice (2).

Some additional intuition of the influence of the sparse prior on the causal inference may be gained
by numerically comparing the marginal likelihoods of the Markov-equivalent models with and with-
out confoundersMx←z→y, Mx→y. (Comparison of these models is of particular importance in
epidemiology, because while the temporal data may often be available for distinguishing direct and
reverse modelsMx→y andMy→x, it is generally difficult to ensure that there is no confounding).
Figure 2 shows that when the empirical correlations are strong andγ1 is at intermediate levels, there
is a strong preference for a causal model. This is because thealternative model with the confounders
will have more parameters, and the weights will need to be larger (and therefore more strongly pe-
nalized by the prior) in order to lead to the same likelihood (note that forvar(x) = var(y) = 1, the
likelihood-equivalence is achieved forw = vwz, |w| ≤ 1). Larger values ofγ1 will tend to strongly
penalize all the weights, which makes the models largely indistinguishable. Also, as the number of
genetic instruments grows, evidence in favor of the causal or pleiotropic model will be less depen-
dent upon the priors on model parameters. For instance, withtwo genotypic variables that perturb
a single transcript, the causal model has three adjustable parameters, but the pleiotropic model has
five (see Figure 1left, (iv)). Where several genotypic variables perturb a single transcript and the
causal model fits the data nearly as well as the pleiotropic model, the causal model will have higher
marginal likelihood under almost any plausible prior, because the slightly better fit of the pleiotropic
model will be outweighed by the penalty imposed by several extra adjustable parameters.

Inference

While the choice of prior (2) encourages sparse solutions, itmakes exact inference of the posterior
parametersp(θ|D) analytically intractable. The most efficient approach is based on the maximum-
a-posteriori (MAP) treatment ([36], [9]), which reduces to solving the optimization problem

θMAP = arg max
θ

{log p ({ỹ}, {x̃}|{g}, θ) + log p(θ)} (3)

for the joint parametersθ, where the latent variables have been integrated out. Note that the MAP
solution for SPIV may also be easily derived for the semi-supervised case where the biomarker
and outcome vectors are only partially observed. Compared to other approximations of inference
in sparse linear models based e.g. on sampling or expectation propagation [26, 31], the MAP
approximation allows for an efficient handling of very largenetworks with multiple instruments
and biomarkers, and makes it straightforward to incorporate latent confounders. Depending on the
choice of the global sparseness and grouping hyperparametersγ1, γ2, the obtained solutions for the
weights will tend to be sparse, which is also in contrast to the full inference methods. In high dimen-
sions in particular, the parsimony induced by the point-estimates will facilitate structure discovery
and interpretations of the findings.

One way to optimize (3) is by an EM-like algorithm. For example, the fixed-point update forui ∈
R
|g| linking biomarkerxi with the vector of instrumentsg is easily expressed as

u
(t)
i =

(

GT G + σ2
xi

(

γ1Ú
(t−1)
i + γ2I|g|

))−1
(

GT 〈xi〉 − GT 〈Z〉vi

)

, (4)
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Figure 3: Top: SPIV for artificial datasets. Left/right plots show typicalapplications for the high
and low observation noise (σ2

x̃ = 0.25 andσ2
x̃ = 0.05 respectively). Top and bottom rows of each

Hinton diagram correspond to the ground truth and the MAP weightsU (1–18),W (19–21),Wg (22–
27). Bottom:SPIV for a genome-wide study of causal effects on HDL in heterogeneous stock mice.
Left/right plots show maximum a-posteriori weightsθMAP and the mutual informationI(xi, y|e)
between the unobserved biomarkers and outcome evaluated from the model atθMAP , under the
joint Gaussian assumption. A cluster of pleiotropic links on chromosome 1 at about 173 MBP is
consistent with biology. The biomarker with the strongest unconfounded effect on HDL isCyp27b1.
Transcripts that are most predictive of HDL through their links with pleiotropic genetic markers on
chrom 1 areUap1, Rgs5, Apoa2, andNr1i3. Parametersγ1,2 have been obtained by cross-validation.

whereG ∈ R
n×|g| is the design matrix,(Úi)kl = δkl/|uki| ∀k, l ∈ [1, |g|]∩Z, xi ∈ R

n, Z ∈ R
n×|z|,

vi ∈ R
|z|, andσ2

xi
= (Ψx)ii. The expectations〈.〉 are computed with respect top(.|{x̃}, {ỹ}, {g}),

which for (1) are easily expressed in the closed form. The rest is expressed analogously, and ex-
tensions to the partially observed cases are straight-forward. Faster (although more heuristic) al-
ternatives may be used for speeding up the M-step (e.g. [7]).The hyperparameters may be set
by cross-validation, marginalized out by specifying a hyper-prior, or set heuristically based on the
expected number of links to be retained in the posterior mode. Once a sparse representation is
produced by pruning irrelevant dimensions, more computationally-intensive inference methods for
the full posterior (such as expectation propagation or MCMC) may be used in the resulting lower-
dimensional model if needed. After fitting SPIV to data, formal hypotheses tests were performed by
comparing the marginal likelihoods of the specific models for the retained instruments, biomarkers,
and target outcomes. These were evaluated by the Laplace approximation atθMAP (e.g. [20]).

4 Results

Artificial data: We applied SPIV to several simulated datasets, and comparedspecific modeling
hypotheses for the biomarkers retained in the posterior modes. The structures were consistent with
the generic SPIV model, with all non-zero weights sampled from N (0, 1). Figure 3 (top) shows
typical results for the high/low observation noise (∀i, σ2

x̃i
= σ2

ỹ = 0.25/0.05). Note excellent sign-
consistency of the results for the more important factors. Separate simulations showed robustness
under multiple EM runs and under- or over-estimation of the true number of confounders. Sub-
sequent testing of the specific modeling hypotheses for the most important factors resulted in the
correct discrimination of causal and confounded associations in≈86% of cases.

Genome-wide study of HDL cholesterol in mice:To demonstrate our method for a large-scale
practical application, we examined effects of gene transcript levels in the liver on plasma high-
density lipoprotein (HDL) cholesterol levels for a mice from a heterogeneous stock. The genetic
factors influencing HDL in mice have been well explored in biology e.g. by Valdar et. al. [38].
The gene expression data was collected and preprocessed by [13], who have kindly agreed to share
a part of their data. Breeding pairs for the stock were obtained at 50 generations after the stock

6



foundation. At each of the 12500 marker loci, genotypes weredescribed by 8-D vectors of expected
founder ancestry proportions inferred from the raw marker genotypes by an HMM-based reconstruc-
tion method [23]. Mouse-specific covariates included age and sex, which were used to augment the
set of genetic instruments. The full set of phenotypic biomarkers consisted of 47429 transcript lev-
els, appropriately transformed and cleaned. Available data included 260 animals. Before applying
our method, we decreased the dimensionality of the genetic features and RNA expressions by using
a combination of seven feature (subset) selection methods,based on applications of filters, greedy
(step-wise) regression, sequential approximations of themutual information between the retained
set and the outcome of interest, and applications of regression methods with LASSO and elastic
net (EN) shrinkage priors for the genotypesg, observed biomarkers̃x, and observed HDL mea-
surements̃y. For the LASSO and EN methods, global hyper-parameters wereobtained by 10-fold
cross-validation. Note that feature selection is unavoidable for genome-wide studies using gene ex-
pressions as biomarkers. Indeed, the considered case of∼ O(105) instruments and 47K biomarkers
would give rise to& O(109) interaction weights, which is expensive to analyze or even keep in
memory. After applying subset selection methods, SPIV was typically applied to subsets of data
with ∼ O(105) loci-biomarker interactions.

The results of the SPIV analysis of this dataset are shown on Figure 3 (bottom). Thebottom left
plot shows maximum a-posteriori weightsθMAP computed by running the EM-like optimization
procedure to convergence from 20 random initializations. For a model with latent variables and
about30, 000 weights, each run took approximately 10 minutes of execution time (only weakly
optimized Matlab code, simple desktop). The parametersγ1,2 were obtained by 10-fold CV. Note
that only a fraction of the variables remains in the posterior. In this case and for the considered
sparseness-inducing priors, no hidden confounders appearto have strong effects on the outcome in
the posterior1. The spikes of the pleiotropic activations in sex chromosome 20 and around chromo-
some 1 are consistent with the biological knowledge [38]. The biomarker with the strongest direct
effect on HDL (computed as the mean MAP weightwi : xi → y divided by its standard deviation
over multiple runs, where each mean weight exceeds a threshold) is the expression ofCyp27b1(gene
responsible for vitamin D metabolism). Knockout of theCyp27b1gene in mice has been shown to
alter body fat stores [24], which might be expected to affectHDL cholesterol levels. Recently it
has also been shown that quantitative trait locus for circulating vitamin D levels in humans includes
a gene that codes for the enzyme that synthesizes cholesterol [1]. A subsequent comparison of 18
specific reverse, pleiotropic, and causal models forCyp27b1, HDL, and the whole vector of retained
genetic instruments (known to be causal by definition) showed a slightly stronger evidence in favor
of the reverse hypothesis without latent confounders (withthe ratio of Laplace approximations of
the marginal likelihoods of reversevs causal models of≈ 1.95 ± 0.27). This is in contrast to the
LCMS where the results are strongly affected by the choice ofan instrument (Figure 1right shows
the results forCyp27b1, HDL, and the same choice of instruments).

To demonstrate an application to gene fine-mapping studies,Figure 3 (bottom right) shows the
approximate mutual informationI(xi, y|e = {age, sex}) between the underlying biomarkers and
unobserved HDL levels expressed from the model atθMAP . The mutual information takes into
account not only the strength of the direct effect ofxi ony, but also associations with the pleiotropic
instruments, strengths of the pleiotropic effects, and dependencies between the instruments. Under
the as-if Gaussian assumption,I(xi, yj |θMAP ) = log(σ2

yj
σ2

xi
) − log(σ2

yj
σ2

xi
− σ4

yjxi
), where

σ2
yj

= ‖Σ1/2
gg (Uwj + wgj

)‖2 + ‖Ψ1/2
z

(Vwj + wzj
)‖2 + wT

j Ψxwj + Ψyj
, (5)

with the rest expressed analogously. HereΣgg ∈ R
|g|×|g| is the empirical covariance of the instru-

ments,wj ∈ R
|x|, wzj

∈ R
|z|, andwgj

∈ R
|g| are the MAP weights of the couplings ofyj with the

biomarkers, confounders, and genetic instruments respectively. When the outcome is HDL, the ma-
jority of predictive transcripts are fine-mapped to a small region on chromosome 1 which includes
Uap1, Rgs5, Apoa2, andNr1i3. The informativeness of these genes about the HDL cholesterol can-
not be inferred simply from correlations between the measured gene expression and HDL levels;
for example, when ranked in accordance toρ2(x̃i, ỹ|age, sex), the top 4 genes have the rankings

1No confounder effects in the posterior mode for the consideredγ1,2 is specific to the considered mouse
HDL dataset, which shows relatively strong correlations between the measured biomarkers and the outcome.
An application of SPIV to proprietary human data for a study of effects ofvitamins and calcium levels on
colorectal cancer (which we are not yet allowed to publish) showed very strong effects of the latent confounders.
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of 838, 961, 6284, and 65 respectively. The findings are also biologically plausible and consistent
with high-profile biological literature (with associations betweenApoa2and HDL described in [38],
and strong links ofRgs5to a genomic region strongly associated with metabolic traits discussed in
[5], while Nr1i3 andUap1 are their neighbors on chromosome 1 within∼ 1Mbp). Note that the
couplings are via the links with the pleiotropic genetic markers on chromosome 1. Adjusting for sex
and age prior to performing feature selection and inferencedid not significantly change the results.

The results reported here appear to be stable for different choices of feature selection methods, data
adjustments, and algorithm runs. We note, however, that different results may potentially be obtained
based on the choice of animal populations and/or processingof the biomarker (gene expression)
measurements. Details of the data collection, microarray preprocessing, and feature selection, along
with the detailed findings for other biomarkers and phenotypic outcomes will be made available
online. Definitive confirmation of these relationships would require gene knock-out experiments.

5 Discussion and extensions

In large-scale genetic and bio-medical studies, we are facing a practical task of reducing a huge set
of candidate causes of complex traits to a more manageable subset of candidates where experimen-
tal control (such as gene knockout experiments or biomarkeralternations) may be performed. SPIV
performs the screening of interesting biomarker-phenotype and genotype-biomarker-phenotype as-
sociations by exploiting the maximum-a-posteriori inference in a sparse linear latent variable model.
Additional screening is performed by comparing approximate marginal likelihoods of specific mod-
eling hypotheses, including direct, reverse, and pleiotropic models with and without confounders,
which (under the assumption of no “prior equivalence”) may serve as an additional test of possible
causation [21]. Intuitively, the approach is motivated by the observation that while independence
of variables implies that they are not in a causal relation, apreference for an unconfounded causal
model may indicate possible causality and require further controlled experiments.

Technically, SPIV may be viewed as an extension of LASSO and elastic net regression which al-
lows for latent variables and pleiotropic dependencies. While being particularly attractive for genetic
studies, SPIV or its modifications may potentially be applied for addressing more general structure
learning tasks. For example, when applied iteratively, SPIV may be used to guide search over richer
model structures (where a greedy search over parent nodes isreplaced by a continuous optimiza-
tion problem which combines subset selection and regression in the presence of latent variables),
which may be used for structure learning problems. Other extensions of the framework could in-
volve hybrid (discrete- and real-valued) outcomes with nonlinear/nongaussian likelihoods. Also,
as mentioned earlier, once sparse representations are produced by the MAP inference, it may be
possible to utilize more accurate approximations of the inference applicable for the induced sparse
structures [6]. Also note that sparse priors on the linear weights tend to give rise to sparse covariance
matrices. A potentially interesting alternative may involve a direct estimation of conditional preci-
sion matrices with a sparse group penalty. While SPIV attempts to focus the attention onimportant
biomarkers establishing strong direct associations with the phenotypes, modeling of the precisions
may be used for filtering outunimportantfactors (conditionally) independent of the outcome vari-
ables. Our future work will involve a direct estimation of the sparse conditional precision matrix
Σ−1

xyz|g of the biomarkers, outcomes, and unmeasured confounders (given the instruments), through
latent variable extensions of the recently proposed graphical LASSO and related methods [11, 18].

The key purpose of this paper is to draw attention of the machine learning community to the prob-
lem of inferring causal relationships between phenotypic measurements and complex traits (disease
risks), which may have tremendous implications in epidemiology and systems biology. Our specific
approach to the problem is inspired by the ideas of instrumental variable analysis commonly used
in epidemiological studies, which we have extended to properly address situations when the ge-
netic variables may be direct causes of the hypothesized outcomes. The sparse instrumental variable
framework (SPIV) overcomes limitations of the likelihood-based LCMS methods often used by ge-
neticists, by modeling joint effects of genetic loci and biomarkers in the presence of noise and latent
variables. The approach is tractable enough to be used in genetic studies with tens of thousands of
variables. It may be used for identifying specific genes associated with phenotypic outcomes, and
may have wide applications in identification of biomarkers as possible targets for interventions, or
as proxy endpoints for early-stage clinical trials.
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