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Abstract

Tree structured belief networks are attractive for image
segmentation tasks. However, networks with fixed archi-
tectures are not very suitable as they lead to blocky arte-
facts, and led to the introduction of Dynamic Trees (DTs)
in [6]. The Dynamic Trees architecture provides a prior
distribution over tree structures, and in [6] simulated an-
nealing (SA) was used to search for structures with high
posterior probability. In this paper we introduce a mean
field approach to inference in DTs. We find that the mean
field method captures the posterior better than just using the
maximum a posteriori solution found by SA.

1. Introduction

Tree structured belief nets are useful for image segment-
ation [1, 7]. They provide a hierarchically structured model
for the different picture elements. The a priori understand-
ing behind this choice of model stems from the fact that we
want the image to be segmented into a number of differ-
ent regions. We would expect those regions to correspond
in some way to the objects that make up the picture. The
hierarchical model seems a natural one for object represent-
ation, where higher level nodes control the distribution of a
large number of leaf nodes (pixels).

Quadtree-structured belief networks provide a model of
this form [1, 7]. They allow exact inference through belief
propagation [3]. However quadtrees produce blocky arte-
facts due to the fact that two (spatially) adjacent leaf nodes
might only be path-connected through a vertex far up the
tree hierarchy. One way around this type of problem is to
use dynamic trees [6]. This is a mixture of tree structures
formed by allowing each vertex to ‘choose’ its parent. This

reduces the blockiness problem, because any two leaf nodes
can be connected at any level of hierarchy, but as the num-
ber of trees in the mixture grows exponentially with network
size, exact belief propagation becomes intractable.

One approach for approximating the posterior distribu-
tion of the dynamic tree involves using the maximum a pos-
teriori choice of tree, obtained through simulated annealing
[6]. Experience has shown that the annealing process tends
to be slow to converge. Here a different approach is taken.
Variational methods are used to fit an approximating distri-
bution to the true posterior. A standard technique involves
the use of a factorised distribution (the mean field approach)
[4, 2]. It is shown here that such an approximation is useful
for dynamic trees.

Section 2 of the paper describes the theory behind the
mean field approach to DTs, and experiments comparing it
with other methods are described in section 3.

2. Inference in Dynamic Trees

A dynamic tree belief network is a mixture of tree struc-
tured belief networks. The model consists of two compon-
ents: a prior distribution of possible tree architectures, and
the conditional probabilities of each node given its parents
and the tree architecture. There any many different possib-
ilities for such components. In [6], the authors used a struc-
ture based on a modified quadtree. The nodes are arranged
in a layered structure, and each node ‘chooses’ its parent in-
dependently from those in the layer above. The natural par-
ent (that which would be chosen in a quadtree arrangement)
has a higher probability of being chosen than the other pos-
sible parents. Nodes which lie adjacent to the natural parent
on the same layer are termed the nearest neighbours, and
similarly nodes a distance N away from the natural parent
are the N’th nearest neighbours. Also the possibility of a



node choosing to be a new root node is allowed with some
small probability.

The model is used by instantiating the evidential nodes
(in our case the leaf nodes) of the network. We wish to infer
values for the non-evidential nodes. We also want informa-
tion about the posterior distribution of the tree structures of
the network. As dynamic trees no longer have the simple
tree structure that the quadtree networks had, tractable in-
ference using belief propagation is no longer feasible.

Two possible approaches to this problem are considered.
The first of these involves using annealing. The second of
these involves using a mean field variational approach. The
annealing case has been considered in an earlier paper [6].
Here the mean field approach is introduced.

2.1. Mean field for dynamic trees

Consider an ordered set
�

of nodes �������	�
�������
��� . Con-
sider also a set � of possible states ���	����������� of each node.
Let ��������� ��� denote the set of possible directed tree struc-
tures over these nodes, where ��� � is an indicator. ��� ��� �
denotes the fact that node ! is the parent of node � . The or-
dering of the nodes means that ��� �#"�$ for !&%'� . Finally let( �)�+*-,� � represent the state of the nodes: *.,� �/� if node� is in state 0 , and is zero otherwise.

Given the above notation, a dynamic tree can be rep-
resented by a prior over the possible trees 1&23�54 , and a
prior over the network states given a particular tree structure1&2 ('6 �54 . This prior over the network states is given by the
conditional probability tables of the network. We assume
that the prior over � factorises: in other words each node
‘chooses’ a parent from a set of possible parents independ-
ently of other nodes (termed the full-time-node-employment
prior in [6]). Hence 1&23�547�98 � �;:.<�= >� � , where : � � is the
probability that node � chooses parent ! . The conditional
probability tables define the state transition probabilities
when traversing a link between a node ! and its child � ,
where 1 ,	?� � is the probability of moving from state @ to state0 during such a transition.

With these prior forms, the joint prior distribution can be
written as

1&23�A� ( 4�� BC� DFE
BC�GDFE :.<�= >� � C ,	? H 1 ,	?� �;IKJ�L= J�M> <�= > (1)

where the indicator variables are simply used to pick out the
correct probabilities.

The nodes (vertices) are split into a set
�ON

and a set�QP
of evidential and non-evidential (hidden) nodes re-

spectively. Likewise the corresponding node state indicator
variables are denoted by

(RN
and
(SP

respectively. The
posterior distribution of the dynamic tree can then be writ-
ten as 1&23�A� (SPO6 (SN 4T�U1&23�A� ( 4GV�1&2 (SN 4

The mean field variational approach involves approxim-
ating this posterior distribution with a factorising distribu-
tion of the form W&23�54�W&2 (RP 4 , where W&23�54 is the approx-
imating distribution over the � variables, and W&2 (XP 4 is the
approximating distribution over the non-evidential

( P
. To

choose good forms for the W ’s the Kullback-Liebler diver-
gence between the W&23�54�W&2 (RP 4 distribution and the true
posterior should be minimised. The KL divergence is of the
formYSZ 2[W 6 6 1\4��^]_a` bAc W&23�A� ( P 4ed f�gih W&23�54�W&2 (SP 41&23�A� ( P 6 ( N 4�j�Ud f�gT1&2 ( N 4lk ]_a` b c W&23�54�W&2 ( P 4 H d f�gm1&23�A� ( 4k7d f�gmW&23�54FkRd f�gmW&2 ( P 4 I (2)

Calculating Q(Z) The procedure for optimising this KL
divergence is now outlined. If W&2 (nP 4 is fixed, then W&23�54
can be chosen to minimise (2). Performing such a min-
imisation gives d f�gmW&23�54o�qp bAc W&2 (SP 4ed f�gT1&23�A� ( 4Frs
t �;u�v . Substituting for 1 from (1) and normalising, we get

W&23�54w� C � �yx
z
{ 2|��� ��}a� ��4p�~ x
z
{ 2[}a� ~ 4 (3)

where }a� ����d f�g : � ��r p ,	?�� * ,� * ?������� b cF� d f�gT1 ,	?� � . Hence we
can explicitly calculate the optimal W&23�54 for fixed W&2 ( P 4 .
Note that W&23�54 turns out to be a factorised distribution.

Calculating Q(X) The next stage involves the minimisa-
tion of the KL divergence for W&2 (nP 4 keeping W&23�54 fixed.
Again substituting in for 1&23�A� ( 4 we getYSZ 2[W 6 6 1\4���]b c W&2 ( P 4ed f�gmW&2 ( P 4lk�] � �X� � � H d f�g : � �r�] ,	? � * ,� * ?��� ��� b c;� d f�gT1 ,	?� � I rX����u�v (4)

where � � �#� � ��� � � ��� _ � and where ����u�v depends only on the
form of W&23�54 and is hence held constant.

To do this minimisation, further assumptions need to be
made about the form of W&2 (RP 4 . Here we require W&2 (RP 4
to factorise further into the mean field form: W&2 (XP 4S�8 � , 2���,� 4 J�L= . The ��,� denotes the mean field probability
that variable � is in state 0 . With this assumption, (4) can be
optimised with respect to the � ’s using a Lagrange multi-
plier term p���� � 23p���� � � k'��4 .

A straightforward application of calculus gives the fol-
lowing iterative update for the means

�7�~ � x
z
{ 2K� �~ 4p � x
z
{ 2K� �~ 4 (5)



where � �~ ��] � ] ? � ~ �+� ?� d f�gT1Q� ?~ � r � � ~ � ?� d f�gT1Q� ?� ~ (6)

The whole procedure These two solutions give us all the
information needed to perform an optimisation of the KL
divergence. Firstly the ��� � are initialised to $ � �����

(where�
is Gaussian noise of zero mean and variance $ � $ � ), and

the � � � calculated. A local maximum of W&2 ( 4 can then be
found by iteratively updating (5) asynchronously across the
different nodes.

Once this has suitably converged, equation (3) can be
used with � * ,� *a?� � ��� b � ����,� �i?� to calculate the new condi-
tionally optimal W&23�54 distribution. (Note that � *;,� *a?� � ��� b �needs only to be computed for !��'� as ��� �#"�$ for !&%'� ).

This whole process is repeated until convergence. Each
step of the process reduces the KL divergence (2), and so
convergence is guaranteed at a local minimum.

3. Experiments

We explore and contrast the performance of the mean
field approach with that of simulated annealing [6] using
a � layer binary tree. With this architecture we have � -d
images with 	 � pixels. Initially we shall consider the case
where the node states are binary variables and the images
are black and white.

A standard DT model of the above architecture was used.
The prior over node states was set to be uniform, with con-
ditional probabilities of $ � 
�
 down the diagonal and $ � $ �
off-diagonal. The probability of nodes choosing to be-
come a root (disconnecting) were set to be more favour-
able than connecting to the nearest neighbour, but less fa-
vourable than connecting to the natural parent. This was
achieved in the same way as described in [6], using the prior: � �#� e

�
� = > V p , e�
� = L . The affinities, �
� � , were set as � for
the natural parent, and �Qk�� for the N’th nearest neigh-
bours of the natural parent, with �R� ��� � � . The affinity for
becoming a root, � B�� ? ? , was $ � � . The model was sampled to
generate a suite of training data of some �+$�$�$ images from
which ��$�$ were selected for our experiments.

In the experiments we use simulated annealing in the
same way as in [6] to find the maximum a posteriori (MAP)
configuration of the DT for each of the images.

For the mean field approach we order the nodes from
the bottom nodes to those on the higher levels, and sweep
through them updating the � s asynchronously a total of 20
times each. This was found to be sufficient to allow these
simultaneous equations to reach their equilibrium state. TheW&23�54 s can then be recalculated. Typically the algorithm
converged E after � or

�
iterations. Mean field was found to

be of the order �+$�$ times faster than simulated annealing.
�
A threshold change of less than ��� � in the KL divergence between

To compare mean field and simulated annealing we plot
the KL divergences � YSZ 2[W 6 6 1\4 against

YSZ 2�� 6 6 1\4 , where
� is the MAP tree configuration (see Figure 1(a)).
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Figure 1. Comparison of (a) KL divergence,
and (b) the unnormalised log posterior of the
MAP tree against the corresponding mean
field DTs.

From the comparative plot of Figure 1(a) it is clear that
the KL divergence of the mean field solutions is signific-
antly lower than that of the MAP dynamic tree in all in-
stances. Typically we see from Figure 1(a), a difference in
KL divergence of about 	�$ between the mean field example,
and the corresponding MAP tree. These results can be un-
derstood when we realise that although the mean field ap-
proximation requires the assumption that 1&2 ( 4 can be fac-
torised, ie. 1&2 ( 45� 8 � 1&2 ( �34 , it maintains a distribution
over 1&23�54 . For the MAP case we usually choose a tree with
greater posterior probability, but we are only basing our es-
timate of the KL divergence on a single structure, which is
unlikely to account for a high proportion of the probability
mass of the posterior distribution. It can be seen that the dis-
tribution of points is grouped into a series of energy bands

successive steps was found to be sufficient to allow the ���! #" to stabilise
on a particular configuration.$

The KL divergence can be computed up to the addition of a constant
dependent solely on the probability of the image data, %�� &(')" .



(a) (b)

(c) (d)

Figure 2. (a)-(b) The HPMF structures for 2 dif-
ferent images, and (c)-(d) the corresponding
MAP trees found by annealing.

for the MAP model, whereas for the mean field method they
are more evenly spread. This is probably due to the discrete
nature of choices over tree structure and node state in the
true posterior distribution. We plan to investigate it further.

We can also compare the posterior � probability of the
MAP tree found by annealing and posterior of the highest
probability tree structure found by mean field (HPMF tree),
where the connected links in the HPMF tree are the ��� � s
of highest probability from the W&23�54 distribution. Such a
comparison is made in Figure 1(b), where the line in the fig-
ure denotes the boundary of equal log posterior. We notice
that in most cases (81.8%) the annealed tree has a higher
posterior, but in 11.5% of cases it is the same, and for
6.7% of examples the mean field approach actually found
a higher posterior tree. The latter is probably an indication
that though the annealer generally finds very good optima, it
cannot guarantee finding the global solution. Mean field by
attempting to fit a distribution better explores the landscape
and is able find some of the harder solutions. However as
we cannot exactly fit the posterior we should usually expect
the sampling approach to give better results. This is en-
couraging in that it demonstrates that the mean field is able
to find interpretations of the data which are comparable in
performance to the MAP structures found by sampling, at
only a fraction of the computational cost.

A qualitative examination of the types of structures the
mean field technique finds is quite instructive. Two ex-
amples of HPMF trees found for different images are shown
in Figures 2(a) and 2(b), and the MAP trees found by sim-
ulated annealing with the same data are shown below them

�
We define the posterior as %��! � &(' "�� %��! #" %�� &(' �  #" and ignore

the normalising term %�� &(')" which is constant across the two approaches.

in Figures 2(c) and 2(d). It can be seen that there is a high
degree of similarity in their structure, with both methods
picking out objects in the image as separate trees.

4. Discussion

We can conclude that the mean field approach provides
significant advantages over structure searching for the MAP
solution in that it produces an approximating distribution to
the posterior, which is more informative than simply choos-
ing a single example. Mean field was also able to find good
HPMF solutions that rivalled the MAP structures found by
simulated annealing. This was achieved with a considerable
saving in computational effort and comes close to making
real time inference in DTs viable.

We note, however, that the assumption in mean field of a
factorised distribution over 1&2 ( 4 is not necessarily a good
one, and we hope to focus further on distributions giving a
closer approximation to the true posterior. One possibility
of using a tree structure to reflect their hierarchical depend-
ence upon each other, has already been considered in [5].

Given the success of the mean field approach at find-
ing good trees, we are now investigating learning of the DT
model parameters using a mean field based procedure with
a view to segmentation of real-world images.
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